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Abstract

DNA metabarcoding of faeces or gut contents has greatly increased our ability to construct networks of predators and prey
(food webs) by reducing the need to observe predation events directly. The possibility of both false positives and false negatives
in DNA sequences, however, means that constructing food networks using DNA requires researchers to make many choices as
to which DNA sequences indicate true prey for a particular predator. To date, DNA-based food networks are usually con-
structed by including any DNA sequence with more than a threshold number of reads. The logic used to select this threshold is
often not explained, leading to somewhat arbitrary-seeming networks. As an alternative strategy, we demonstrate how to con-
struct food networks using a simple Bayesian model to suggest which sequences correspond to true prey. The networks
obtained using a well-chosen fixed cutoff and our Bayesian approach are very similar, especially when links are resolved to
prey families rather than species. We therefore recommend that researchers reconstruct diet data using a Bayesian approach
with well-specified assumptions rather than continuing with arbitrary fixed cutoffs. Explicitly stating assumptions within a
Bayesian framework will lead to better-informed comparisons between networks constructed by different groups and facilitate
drawing together individual case studies into more coherent ecological theory. Note that our approach can easily be extended
to other types of ecological networks constructed by DNA metabarcoding of pollen loads, identification of parasite DNA in fae-
ces, etc.

© 2020 The Author(s). Published by Elsevier GmbH on behalf of Gesellschaft für Ökologie. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Introduction

Food webs and other ecological networks offer a valuable
framework for understanding the structure and functioning
of ecological communities. Constructing these networks
requires robust information on species’ interaction partners,
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but spatial and temporal variation in interactions, methodo-
logical limitations, and trade-offs in sampling effort mean
that any observed network is only an approximation of the
true community structure (Cirtwill et al., 2019). This is espe-
cially true for interactions involving generalist species
(because of the greater potential for variation and measure-
ment error) or rare or transient species (because they are usu-
ally observed very few times). The potential for errors in
generalist species is worrying as these species are likely to
be critical to community structure and functioning
llschaft für Ökologie. This is an open access article under the CC BY license

http://crossmark.crossref.org/dialog/?doi=10.1016/j.baae.2020.11.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:alyssa.cirtwill@helsinki.fi
https://doi.org/10.1016/j.baae.2020.11.007
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.baae.2020.11.007
https://doi.org/10.1016/j.baae.2020.11.007
http://www.elsevier.com/locate/baae


68 A.R. Cirtwill and P. Hamb€ack / Basic and Applied Ecology 50 (2021) 67�76
(Lai et al., 2012), while rare species are often conservation
targets. To address the problem of approximation in empiri-
cal networks, new and improved methods for detecting inter-
actions are continually being developed. One such method,
DNA metabarcoding, can reveal many interactions which
could not otherwise be observed.

Using DNA metabarcoding, prey DNA can be identified
in predator gut contents, faeces, or regurgitates (Dal�en et al.,
2004; Pompanon et al., 2012; Waldner and Traugott, 2012).
Parasite DNA can also be recovered from host faeces (Jirku�

et al., 2012; Paf�co et al., 2018), parasitoids can be identified
when sampling hosts (Kitson et al., 2019; Wirta et al.,
2014), and plant DNA can be identified from pollen loads
recovered from individual pollinators (Bell et al., 2017; Jor-
dano, 2016). Compared to traditional network construction
based on direct observation of an interaction (either through
field observations, rearing hosts until parasitoid emergence,
or morphological identification of parasites, gut contents, or
pollen grains), DNA metabarcoding has great potential to
reveal interactions involving species which are difficult to
observe interacting (e.g., nocturnally-feeding bats Arrizaba-
laga-Escudero et al., 2018, marine mammals Bowen and
Iverson, 2013), do not leave morphologically-distinct traces
of interaction (e.g., spiders with external digestion Roubinet
et al., 2017; Verschut et al., 2019), or where the prey com-
munity is not known (Boyer et al., 2013). DNA metabarcod-
ing can also be less labour-intensive than traditional
methods (Bell et al., 2017; Kitson et al., 2019), allowing
researchers to increase sample sizes.

Despite these benefits, DNA metabarcoding shares the
problems of measurement error which plague other
approaches to ecological network construction. There are
two common strategies for network construction using
molecular methods: restricting the analysis to broad groups
of interaction partners using diagnostic PCR (e.
g., Staudacher et al., 2016; Waldner and Traugott, 2012) or
identifying species using metabarcoding (e.g., Arrizabalaga-
Escudero et al., 2018; Deagle et al., 2019; Pompanon et al.,
2012; Verschut et al., 2019), both of which are subject to
errors and biases that can affect the empirical network pro-
duced. For example, DNA amplification may be biased
towards a subset of species in the sample. This means that
the abundance of sequences detected does not necessarily
reflect the proportions of each prey in the diet (Bell et al.,
2017; Deagle et al., 2019; Liu et al., 2019). There is also a
risk that contamination or the formation of chimeric DNA
during PCR amplification can result in the identification of
species which are not truly present in the sample
(Alberdi et al., 2018). Finally, sequence reads may be mis-
labelled during PCR amplification or sequencing (i.e., “tag-
jumping”) (Mathieu et al., 2020; Schnell et al., 2015). To
reduce the risk of including such false positives, researchers
commonly discard potential partners represented by few
sequence reads from their data. This strategy creates a trade-
off between eliminating potential false positives and retain-
ing rare DNA sequences that represent prey which are truly
eaten (“true prey”), plants which were truly visited, etc. This
trade-off is analogous to the problem in graph theory of
“pruning” a noisy observed network in order to approach
the unknown, true “core” of the network (Dianati, 2016).
Although there are many suggestions for suitable thresholds
(e.g., 1% of sequences in Deagle et al., 2019, 1, 5, 10, or
100 reads in Alberdi et al., 2018, 5 reads in Verschut et al.,
2019), in practice the choice of threshold is often somewhat
arbitrary (or at least seldom justified in print). Why, for
example, is a cutoff of five sequence reads superior to four
or six reads?

As an alternative to an arbitrary cutoff value, we can use
knowledge about the community as a whole to justify
including or excluding uncertain links. Using food webs as
an example, this changes the question from “Did we find
enough reads of prey Y’s DNA in predator X’s gut to decide
that X really ate Y?” to “Given what we know of the overall
community structure and n observed reads of prey Y in the
gut of predator X, what is the probability that predator X
really ate prey Y?”. Potential prey can be included or
excluded based on these probabilities by treating the likeli-
hood of a predator-prey interaction as a Bayesian process.
Using a Bayesian approach prompts researchers to explicitly
state their assumptions (Cirtwill et al., 2019; Spiegelhalter
et al., 2000), which facilitates the evaluation and comparison
of diets based on DNA metabarcoding across studies. While
we cannot know the true structure of an empirical ecological
network, we can strive to be as transparent as possible when
estimating this structure.

In order to compare gut-content DNA analyses using a
Bayesian framework with previous work using fixed cutoffs,
we must understand which types of interactions are retained
and rejected by the two approaches. We use gut-content
DNA derived from Pardosa spiders, originally collected in
order to test whether different species and life stages have
overlapping diets (Verschut et al., 2019), to compare esti-
mated spider diets between the Bayesian framework and
approaches using a fixed cutoff and one based on the
removal of tag jumping errors. We show that, while there
are differences in the sets of links included using different
methods of network construction, all three approaches iden-
tify a similar core of common, well-supported links. Given
this similarity, we advocate for approaches to network con-
struction that promote more explicit statements of the
assumptions involved, such as our Bayesian framework.
Materials and methods

Data collection and fixed-cutoff network assembly

Data used in this study were collected and originally ana-
lysed in Verschut et al. (2019). Prey DNA was extracted
from spider guts and sequenced using primers that do not
amplify Pardosa DNA (see Verschut et al., 2019 for full
details). Sequences were then compared to DNA barcodes
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in the Barcode of Life Database (Ratnasingham and
Hebert, 2007). As this database is continuously updated and
expanded, we repeated the comparison of unique sequences
identified during the Verschut et al. (2019) study to the data-
base (see Appendix A1: section S1).

For each of eight sites, we assembled networks of interac-
tions between prey taxa and spider individuals using all
fixed cutoff values c between 1 and 101 (Appendix A1: sec-
tion S1). Spiders were grouped by age and species: (i) adult
Pardosa agricola, (ii) adult P. prativaga, (iii) subadults of
both species, and (iv) juveniles of both species; subadults
and juveniles could not be identified to species. The cutoff
c=6 was used in Verschut et al. (2019) and was chosen
based on the accumulation curve of unique links in order to
strike a balance betweeen detection of diversity and error
removal (Alberdi et al., 2018). This curve was steep when
c<6 (many links and families were removed at each step)
but shallower when c>6 (Fig. 1A-C). We therefore used the
fixed-cutoff networks where c=6 as a baseline for a high-
quality approximation of the true spider-prey network
against which to compare the other networks.
Controlling for the risk of tag-jumping

Tag-jumping, where sequences are mis-labelled as coming
from the wrong sample, is a potential issue in DNA metabar-
coding studies using high-throughput sequencing and primer
tags (Schnell et al., 2015). While rates of tag-jumping are gener-
ally low, these substitutions may nevertheless create substantial
numbers of false positive links. To reduce the number of false
positives included in downstream analyses, recent studies have
removed a percentage of reads in each sample (Matesanz et al.,
2019) or subtracted a correction factor based on the observed
abundance of contaminants Makiola et al. (2019). Here, we
apply a conceptually similar correction.

We assume that tag-jumping is a random process, mean-
ing that the likelihood of a read being assigned to a sample
by tag-jumping increases with the total number of reads for
a prey. The overrall probability of tag jumping depends on
the tagging structure and methods used during library build-
ing, and can be estimated from the distribution of reads
across samples. In our dataset, we estimate this probability
to be 0.56-3.99% (Appendix A1: section S2). As the top of
this range assumes that all errors were due to tag jumping
and therefore overestimates the problem, we assume that 1%
of all reads for a prey taxon were erroneously assigned. We
further assume that this 1% of tag-jumped reads is distrib-
uted evenly across spiders where this prey taxon was identi-
fied, and estimate a corrected number of reads kij for each
potential link between prey taxon i and spider j:

kij ¼ oij�0:01� ti
hji

; ð1Þ

where oij is the original number of reads of prey taxon i
recovered from spider j; ti is the total number of reads for
prey i across all spiders, and hi is the number of spiders
from which prey i was recovered. If kij<0, then we set
kij ¼ 0. If all reads of prey i were recovered from a single
spider (hi=1), then we concluded that tag-jumping had not
occurred and did not apply the correction.

We constructed networks for each site including all
links where kij>0. We used these “dynamic-cutoff” net-
works as the raw material when constructing Bayesian net-
works (described below). Within this framework, the tag-
jumping correction can be viewed as part of the prior infor-
mation used to estimate the true structure of the network.
Bayesian network assembly

Constructing a Bayesian network involves three steps: (1)
identifying a suitable prior distribution, (2) modifying the prior
with observed data, and (3) assembling networks based on
posterior likelihoods of each interaction. The prior distribution
describes the baseline probability of an interaction between an
arbitrary prey and predator, and may be based upon data from
similar published systems or from the focal system itself if a
well-studied analogue is not available (Cirtwill et al., 2019).
Posterior distributions are created by combining this prior dis-
tribution with the observed data for each prey and predator.
These posterior distributions allow us to calculate the posterior
probability of each interaction and select which interactions to
include in the network (Appendix A1: sections S3�S5).
Identifying a prior
We based our prior on connectance: the overall probability

that any given predator and prey will interact (Dunne et al.,
2002). Connectance is calculated as the number of observed
links divided by the product of the numbers of spiders and
prey taxa. This prior assumes that, in general, spiders tend to
consume similar numbers of prey. As the prey community
(and numbers of taxa consumed per spider) likely varies
between sites, we constructed separate priors for each site.

To obtain a distribution of interaction probabilities which
does not depend upon a particular choice of cutoff, we cal-
culated the connectance of the network for each site con-
structed using each cutoff value (101 networks per site;
Appendix A1: sections S3). Connectance ranges between 0
(no species interacts with any other) and 1 (all species inter-
act with all others). Our connectance-based prior distribution
for the probability λij that spider group i eats prey j at site k
therefore follows a beta distribution:

λijk »Betaða;bÞ; ð2Þ
which is defined by two shape parameters, a and b. We
determined maximum-likelihood estimates of these param-
eters using the R (R Core Team, 2016) function “fitdist”
from the package fitdistrplus (Delignette-Muller and
Dutang, 2015).



Fig. 1. Choice of cutoff affects the structure of fixed-cutoff networks by creating a trade-off between including true links and excluding false
positives. This trade-off can be seen both in networks describing particular sites (broken, coloured lines) and in the mean across sites (thick,
solid line). Although the cutoff of c ¼ 5 in Verschut et al. (2019) (equivalent to c=6 in our framework; indicated by a dotted vertical line)
was chosen by examining the properties of networks connecting spider age groups to prey families, networks connecting individual spiders
to prey taxa respond similarly. As the cutoff threshold increases from one to six, (A and B) the number of links per site and (C and D) the
number of prey families per site decrease rapidly while (E and F) the proportion of links included at cutoff c which are also included at cutoff
cþ 1 increases rapidly. As the cutoff threshold increases beyond six, the change in each of these properties is slower. (G and H) Connec-
tance, a measure of the density of links within each site, changed very little over different cutoff thresholds as both links and nodes (spiders
with no links supported by reads >c) can be removed with increasing cutoffs. Since connectance is robust to the choice of cutoff, we use the
distribution of connectances across a broad range of cutoffs as the basis for our Bayesian prior distribution.
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Incorporating observed data & constructing networks
The prior distribution gives the overall probability that an

arbitrary spider from any age group has consumed an arbi-
trary prey. Our next step is to incorporate the observed data
and obtain a posterior distribution of how likely it is that a
given spider actually eats each observed prey, given the
overall connectance of the network and the set of DNA
sequences recovered from each spider. For an individual spi-
der j and prey taxon i; consider the total number of identified
sequence reads minus the tag-jumping correction (kij) as the
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number of trials in a Bernoulli distribution (nj). This is the
maximum number of reads from spider j which could corre-
spond to prey i after correcting for tag-jumping. These
observations give the maximum likelihood estimates
(MLEs) of the posterior parameters: a0

ij ¼ aþ kij and
b0
ij ¼ bþ nj�kij. The posterior parameters in turn give the

MLE for the probability of an interaction between i and j:

MLE ¼ aþ kij
aþ bþ nj

: ð3Þ
Fig. 2. When interactions are pooled to spider groups and prey families,
Bayesian approaches produce very similar networks. This leaves ecolog
assumptions used in network construction. Here we show food webs of Pa
networks (red), (B) the dynamic-cutoff networks (green), (C) Bayesian n
both the fixed-cutoff and Bayesian networks (“restricted” networks; black
the dynamic-cutoff networks. Box widths reflect the total number of link
prey families have been removed for greater clarity. Light grey portions o
network types but not included in the focal network. Networks have been
of the references to colour in this figure legend, the reader is referred to th
For spiders with many reads, the posterior MLE
depends mostly on the observed data. For spiders
with few reads, the MLE depends mainly on the connec-
tance of the entire network. In effect, we use information
from spiders with many reads to indicate the number of
prey consumed by spiders with few reads. We constructed
Bayesian networks for each site including all interactions
with a threshold probability >0.01 (Appendix A1: section
S4). In order to confirm that the chosen prior does not con-
strain the posterior networks to unreasonable structures, we
both the fixed-cutoff, dynamic-cutoff (tag-jumping correction), and
ists free to choose the approach which most clearly documents the
rdosa spiders assembled from (A) links included in the fixed-cutoff
etworks (blue), and (D) networks including only links that were in
). Note that all links in the Bayesian networks were also included in
s observed each spider group or prey family; very rarely-consumed
f boxed reflect links included in a network made by combining all
scaled for constant widths of spider group boxes. (For interpretation
e web version of this article.)
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compared the posterior networks to networks simulated
using the prior only (Appendix A1: section S5).
Comparison of network types

Having demonstrated the effect of including observed data
on the Bayesian networks, we now compare the number of
links included in different network types, as well as the distri-
butions of these links between spider age groups. We were
particularly interested in interactions included in only some
network types (Appendix A1: section S6). As networks relat-
ing individual predators to prey taxa are the most closely-
related to the original data and the most likely to highlight dif-
ferences between the fixed-cutoff and Bayesian networks
(because interactions are not pooled by predator group or
prey family), we focus on these detailed networks rather than
pooling predators or prey. See Appendix A1: section S7 for a
brief discussion of pooled networks.
Results

We compared networks using a fixed cutoff c=6 (Fig. 1)
with networks which filter out links that are likely to be due
to tag-jumping (dynamic-cutoff networks) and Bayesian net-
works which incorporate the tag-jumping filter, a connec-
tance-based prior (with shape parameters for each site [see
Appendix A1: section S3, Table S3]), and the observed data.
Table 1. Mean numbers of reads, total reads per spider and total reads pe
the dynamic-cutoff networks only, the dynamic-cutoff and Bayesian net
links and (B-D) p-values for Tukey’s honest significant difference tests c
Bayesian networks were also included in the dynamic-cutoff networks.

(A) Mean values

Network type Reads

Fixed-cutoff 11.9
Dynamic-cutoff 2.00
Bayesian & dynamic-cutoff 2.71
All 6957
(B) Number of reads per link
Network type Dynamic-cutoff only
Fixed-cutoff only <0.001
Dynamic-cutoff only -
Dynamic-cutoff & Bayesian -
(C) Total number of reads per spider
Network type Dynamic-cutoff only
Fixed-cutoff only <0.001
Dynamic-cutoff only -
Dynamic-cutoff & Bayesian -
(D) Total number of reads per prey
Network type Dynamic-cutoff only
Fixed-cutoff only <0.001
Dynamic-cutoff only -
Dynamic-cutoff & Bayesian -
The fixed-cutoff networks contained the most links and spi-
ders, followed by the dynamic-cutoff networks (Fig. 2,
Appendix A1: section S8). The mean number of links per
spider also decreased from the fixed-cutoff networks to the
dynamic-cutoff networks to the Bayesian networks (Appen-
dix A1: section S8). The mean number of prey consumed
per spider did not differ between age groups in the fixed-cut-
off networks (F3;471=2.34, p=0.072) but did differ between
age groups in the dynamic-cutoff networks (F3;472=3.32,
p=0.020) and Bayesian networks (F3;472=6.24, p<0.001).
Higher-order network properties varied slightly between net-
work types, with the fixed-cutoff networks generally being
most distinct from the other network types (see Appendix
A1: section S8, Fig. S2).

Links included in all network types tended to have higher
numbers of reads than links included in only some networks
types, although this was not significant for links included
only in the dynamic-cutoff networks (Table 1A,B;
Fig. 3A�C). Mean numbers of reads did not differ between
links included in different subsets of networks (Table 1B).
Links included in different network types also varied in both
the total number of reads per spider and total number of
reads per prey (Table 1, Fig. 3D�I). Links included in the
Bayesian networks but not fixed-cutoff networks tended to
involve prey with low total numbers of reads (and therefore
low risk of tag-jumping) and spiders with low total numbers
of reads. As the number of total reads per spider tended to
be higher in adults of both species than in subadults and
juveniles and total number of reads per prey varied across
r prey differed for links included in the fixed-cutoff networks only,
works, and all networks. We give (A) mean values for each set of
omparing means across groups. Note that all links included in the

Total reads per spider Total reads per prey

21,589 6.00�105

61,945 8.12�102

5547 6.44�102

15,062 4.42�105

Dynamic-cutoff & Bayesian All
<0.001 <0.001
<0.001 0.151
- 0.019

Dynamic-cutoff & Bayesian All
0.001 <0.001
<0.001 <0.001
- 0.106

Dynamic-cutoff & Bayesian All
<0.001 <0.001
>0.999 <0.001
- <0.001



Fig. 3. Links included in only one type of network linking individual spiders to prey taxa tended to have different properties than links
included in all networks. (A-C) Links included in all network types (solid black histograms) were usually represented by more reads than
links included in the fixed networks only, dynamic-cutoff and Bayesian networks, or dynamic-cutoff networks only (striped red, spotted
blue, or striped blue histogram, respectively). (D�F) Links included in the fixed-cutoff networks only came from spiders with a similar distri-
bution of total reads as links included in all network types. Links included in the dynamic-cutoff and Bayesian networks were more likely to
come from spiders with higher total numbers of reads, while links included in the dynamic-cutoff networks only came from spiders with very
high numbers of total reads. (G�I) Links included in the fixed-cutoff networks only involved prey with a similar distribution to total reads as
links involved in all network types. Links included in the dynamic-cutoff and Bayesian networks or dynamic-cutoff networks only tended to
involve prey with especially low total numbers of reads. In all panels, the last bin collects all links or spiders with numbers of reads beyond
the limit of the x-axis. We truncate these axes to improve clarity near the origin. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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families, these differences have consequences for the distri-
bution of links across prey and predator groups. Links
included only in one network type (e.g., fixed-cutoff net-
works only) were not distributed evenly across spider groups
(x2

df¼9=36.4, p<0.001; p-value based on simulations) or
prey families (x2

df¼108=621, p<0.001; p-value based on sim-
ulations).

Despite these minor differences, the three network types
had very similar structures overall (Fig. 2). The majority of
links were included in all network types, indicating that all
approaches identified the same core network structure. The
links not included in all network types tended to be sup-
ported by few reads, involve prey with few total reads, and/
or come from spiders with few total reads. These links are
therefore the most susceptible to various errors in the
metabarcoding process and should be treated with caution
when analysing higher-order network properties.
Discussion

DNA metabarcoding of gut contents or faeces has allowed
researchers to obtain dietary information for groups such as
spiders for which this information was previously difficult
to access (Eitzinger et al., 2019; Waldner and Traugott,
2012). This new diet information, however, comes with the
risk of false positives (mis-identified “prey” which are not
actually eaten) (Alberdi et al., 2018; Roslin and Majaneva,
2016). False positives can arise, for example, through con-
tamination during sampling or laboratory analysis, through
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the formation of chimeric DNA during PCR replication, or
due to tag jumping (Alberdi et al., 2018; Schnell et al.,
2015). The typical strategy for limiting false positives is to
eliminate prey supported by a small number of sequence
reads, but the appropriate threshold for this filtering is not
clear (Alberdi et al., 2018). Here, we re-frame the problem
from identifying a number of reads which distinguishes
between “true” and “false” prey to calculating the probabil-
ity that each taxon identified in gut contents is a true prey.
Any prey with a probability above a reasonable threshold is
included in the network.

The Bayesian approach makes better use of the available
data by using what information each spider provides, together
with the prior, to estimate the most likely prey for each individ-
ual. Most of the links included in the Bayesian networks but
not the fixed-cutoff networks involve spiders with few total
reads. In these cases, few links meet the fixed threshold while
the Bayesian networks are able to use prior information about
connectance and the risk of tag jumping for different prey to
provide a “best guess” for the diets of these individuals. The
Bayesian framework’s inclusion of predator and prey proper-
ties is analogous to graph-pruning algorithms which include or
exclude links based on node properties as well as link strengths
(Dianati, 2016; Radicchi et al., 2011; Zhou et al., 2012). These
approaches acknowledge that filtering links only based on
strength can eliminate low-strength structures of interest (Dia-
nati, 2016). Given the similarities across network types, we rec-
ommend that researchers use the Bayesian approach because it
obliges researchers to make their prior assumptions about the
network explicit� and therefore open to validation or rejection)
in a way that choosing fixed cutoffs does not
(Spiegelhalter et al., 2000), and because it addresses the poten-
tial for errors that are not due to tag-jumping.

The Bayesian approach for network construction can be
generalised beyond predator-prey networks to constructing
host-parasite networks based on faecal DNA, plant-pollinator
networks based on pollen DNA, etc. In systems where more
information about the system is available, more complex pri-
ors can be constructed in order to generate more realistic pos-
terior networks. For example, if varying amplification rates
for different prey are known (Liu et al., 2019), this informa-
tion could be used to build a prior which counteracts these
biases. Prey abundances can also be used to inform a prior
(Graham and Weinstein, 2018; Weinstein and Graham,
2017a), unless the aim of the study is to test predator selectiv-
ity (Cirtwill et al., 2019; Weinstein and Graham, 2017b).
Other traits such as body mass can also be used to inform the
prior, as long as these traits are known for the life stages that
are most likely to interact (Brose, 2010; Brose et al., 2006;
Gravel et al., 2016; Portalier et al., 2019). Finally, network-fil-
tering algorithms could be borrowed from the graph theory
literature (e.g., Dianati, 2016; Zhou et al., 2012), especially in
systems where number of reads is strongly correlated with the
strength of an interaction. All of these informative priors have
the potential to give more realistic estimates of the true net-
work structure. The strong assumptions used to build these
priors also carry a risk of biasing the posterior networks
against including ’unexpected’ links which do not fit these
assumptions. For example, a strong prior based on body mass
ratios may exclude links involving predators with feeding
strategies that allow them to consume unusually large or small
prey, especially if the DNA of these prey does not amplify
well with the chosen primer. The appropriate balance between
making reasonable assumptions and avoiding imposing con-
straints on the final network will depend on the circumstances
of each study and deserves careful consideration during
experimental design.

In closing, it is important to remember that all methods of
diet reconstruction or network construction are somewhat
arbitrary. When using gut contents to establish interactions,
researchers must choose which prey to focus on (and a cor-
responding suitable primer), assess the risk of including
“prey” which were derived from the guts of predators con-
sumed by the focal species, and determine which interac-
tions are supported well enough to be included. In cutoff-
based approaches, this is done by setting a threshold number
or proportion of reads. In Bayesian approaches, this is done
by setting a threshold probability of interaction. In either
case, researchers must justify these decisions and support
them as well as possible. By making the decision-making
process more explicit, we can facilitate comparisons of
results between networks constructed using slightly different
methods and, as a field, develop best practices for building
networks using gut content DNA.
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