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Abstract
1. Descriptions of ecological networks typically assume that the same interspecific 

interactions occur each time a community is observed. This contrasts with the 
known stochasticity of ecological communities: community composition, species 
abundances and link structure all vary in space and time. Moreover, finite sam-
pling generates variation in the set of interactions actually observed. For interac-
tions that have not been observed, most datasets will not contain enough 
information for the ecologist to be confident that unobserved interactions truly 
did not occur.

2. Here, we develop the conceptual and analytical tools needed to capture uncer-
tainty in the estimation of pairwise interactions. To define the problem, we iden-
tify the different contributions to the uncertainty of an interaction. We then 
outline a framework to quantify the uncertainty around each interaction by com-
bining data on observed co-occurrences with prior knowledge. We illustrate this 
framework using perhaps the most extensively sampled network to date.

3. We found significant uncertainty in estimates for the probability of most pair-
wise interactions. This uncertainty can, however, be constrained with informa-
tive priors. This uncertainty scaled up to summary measures of network structure 
such as connectance and nestedness. Even with informative priors, we are likely 
to miss many interactions that may occur rarely or under different local 
conditions.

4. Overall, we demonstrate the importance of acknowledging the uncertainty in-
herent in network studies, and the utility of treating interactions as probabilities 
in pinpointing areas where more study is needed. Most importantly, we stress 
that networks are best thought of as systems constructed from random varia-
bles, the stochastic nature of which must be acknowledged for an accurate rep-
resentation. Doing so will fundamentally change network analyses and yield 
greater realism.
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1  | INTRODUC TION

Representing an ecological community as a network addresses 
both community composition and interspecific interactions (Roslin 
& Majaneva, 2016). Identifying these interactions is critical to un-
derstanding species’ effects on each other and predicting commu-
nity responses to perturbations (Bartomeus et al., 2016; Giron et al., 
2018). Importantly, information is conveyed both by the presence 
and by the absence of interactions. Presences and absences are not, 
however, equally certain. An observed link definitely occurred, but 
there are multiple reasons why a given link may not be observed 
(Jordano, 2016).

First, ecological communities are stochastic (Gotelli, 2000). 
Community composition and abundances vary over space (Baiser, 
Gotelli, Buckley, Miller, & Ellison, 2012) and time (Olesen, Stefanescu, 
& Traveset, 2011), leading to variation in encounter probabilities 
and hence interactions (Poisot, Stouffer, & Gravel, 2015; Vázquez, 
Morris, & Jordano, 2005). Species must co- occur in order to be 
observed interacting, so any variation in co- occurrence will create 
variation in the set of observed interactions (Graham & Weinstein, 
2018; Gravel et al., 2018). Even assuming constant co- occurrence 
within a system, changing abundances can affect interactions if spe-
cies which would otherwise interact become too rare to detect each 
other (Jordano, 2016; Tylianakis, Laliberté, Nielsen, & Bascompte, 
2010). Moreover, interactions vary over space (Baiser et al., 2012; 
Kitching, 1987), time (Lopez, Camus, Valdivia, & Estay, 2017; Olesen 
et al., 2011), between individuals (Fodrie et al., 2015; Novak & 
Tinker, 2015; Pires et al., 2011; Wells et al., 2013), throughout life 
cycles (Clegg, Ali, & Beckerman, 2018) and with environmental con-
ditions (Poisot et al., 2015).

Beyond ‘true’ variation in network structure, several research-
ers note effects of sampling intensity (e.g. Blüthgen, Menzel, & 
Blüthgen, 2006; Jordano, 2016; Martinez, Hawkins, Dawah, & 
Feifarek, 1999). Assessments of the accumulation of interactions 
with increasing sampling effort suggest that it is more challeng-
ing to correctly document interactions than species (Bartomeus, 
2013; Giron et al., 2018; Guimerà & Sales- Pardo, 2009; Jordano, 
2016; Poisot, Canard, Mouillot, Mouquet, & Gravel, 2012). As a re-
sult, it has been proposed that interactions should be described 
probabilistically and network metrics computed accordingly 
(Bartomeus, 2013; Poisot et al., 2016). Such efforts usually take 
the form of creating model networks that approximate observed 
empirical networks (Allesina, Alonso, & Pascual, 2008; Guimerà & 
Sales- Pardo, 2009; Rohr, Naisbit, Mazza, & Bersier, 2016; Williams, 
Anandanadesan, & Purves, 2010). These models may be based on 
species traits and/or abundances (Graham & Weinstein, 2018; Rohr 
et al., 2016; Weinstein & Graham, 2017b) or on simple abstract 
rules (Allesina et al., 2008; Guimerà & Sales- Pardo, 2009; Williams 
et al., 2010). Model networks provide an important ‘reality check’ 
by allowing hypothesis testing about factors structuring ecologi-
cal networks (Bartomeus, 2013; Graham & Weinstein, 2018). They 
can also allow estimation of the numbers unobserved of interac-
tions (Jordano, 2016; Weinstein & Graham, 2017b) and predict 

which unobserved interactions are most likely (Bartomeus, 2013; 
Guimerà & Sales- Pardo, 2009).

To date, models incorporating uncertainty have either been very 
general (e.g. Guimerà and Sales- Pardo (2009); Gravel et al. (2018)) or 
very system- specific (e.g. Bartomeus (2013); Graham and Weinstein 
(2018)); in either case, such a model may be a poor fit for a particular 
study system. Moreover, some of the models described above can-
not accommodate species observed only once (Bartomeus, 2013; 
Weinstein & Graham, 2017a). As rare species are likely to be ob-
served less frequently (Blüthgen et al., 2006) and may be of partic-
ular interest (e.g. when modelling species loss), there is a need for 
a more widely applicable framework that includes rarely observed 
species.

Here, we introduce a simple, adaptable Bayesian framework. 
First, we briefly describe the nested levels of uncertainty affect-
ing ecological network construction. Understanding this nesting 
is an important step towards formalising our interpretation of the 
different drivers of uncertainty about interactions. Importantly, we 
distinguish between the possibility that an interaction is unfeasible 
(cannot occur) and the possibility that, given an interaction is feasi-
ble, it may not occur during a particular sampling event.

In the context of this uncertainty, which can be reduced but not 
eliminated by high- quality sampling (Bartomeus, 2013), we present 
a Bayesian framework which combines observed data with a prior 
expectation of interaction probabilities. We conclude with a worked 
example applying this framework to an intensively sampled host–
parasitoid network. We find that even the highest quality empiri-
cal network data we could find has substantial uncertainty about 
whether many pairs of species interact, demonstrating the need to 
include information about this uncertainty in published networks.

1.1 | Why are some interactions not observed?

We start from the perspective of a community ecologist describing 
an interaction network. This ecologist will want to describe the spe-
cies present and the links between them (Roslin & Majaneva, 2016). 
While an observed link definitely occurred (assuming species are 
correctly identified), a link may not be observed for many reasons, 
whether or not it truly occurred (Figure 1). Moreover, given an unob-
served interaction in an empirical dataset, we often cannot deter-
mine why the interaction was not observed post hoc. The detection 
of any interaction is a stochastic process subject to many levels of 
uncertainty. As a conceptual guide, we describe three nested levels 
of uncertainty that roughly address the questions: ‘Could species i 
and j interact?’, ‘Did they interact during sampling?’ and ‘Did we ob-
serve the interaction?’.

1.2 | Could the species interact?

Fundamentally, some interactions are feasible while others are not 
(Poisot et al., 2015). Assuming that the feasibility of interactions de-
pends on the traits of species involved, we can define the probabil-
ity of an interaction Lij between species i and j given some function 
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describing trait- matching Tij as P (Lij |Tij) = λij (Bartomeus, 2013; 
Gravel, Poisot, Albouy, Velez, & Mouillot, 2013; Weinstein & Graham, 
2017a). In some cases, the traits prohibiting an interaction are known 
and there will be little uncertainty about λij. Generally, however, the 
traits that might prohibit an interaction are unknown (Dormann, 
Fründ, & Schaefer, 2017) and uncertainty about λij will be high. An 
unobserved interaction may have λij > 0, and the associated zero in 
an interaction matrix might be false. Trait- matching models can re-
duce uncertainty about λij (Jordano, 2016). As these models improve, 
λij should either tend to 0 or to 1. Nevertheless, every model is imper-
fect and lacks information that could be used to define constraints on 
at least some interactions (Dormann et al., 2017). This leaves some 
uncertainty about whether some species pairs could interact.

1.3 | Did the species interact during sampling?

A feasible interaction (i.e. Lij = 1) still may not occur at a particular 
place and time (Poisot et al., 2015). This could be because constraints 
such as inclement weather or low abundance prevented the interac-
tion (Jordano, 2016), a preferred interaction partner was available 
(Weinstein & Graham, 2017b) or individual variation in traits meant 
that local individuals could not interact even if the species in gen-
eral can (Gravel et al., 2013; Poisot et al., 2015; Wells et al., 2013). 
For example, a rare galler may not parasitise a rare plant because 
they do not encounter each other. In metawebs, an interaction may 
not occur locally because two species do not co- occur at a particu-
lar site even if they do co- occur and interact elsewhere (Graham & 
Weinstein, 2018). We can define the local realisation of an interac-
tion, Xij, given that the interaction is feasible, as a stochastic process 
with associated probability P (Xij|Lij = 1) = χij. It is unlikely that χij = 1 
except in the case of obligate specialists who always interact when-
ever they co- occur and always co- occur. When χij < 1, we cannot be 
sure whether an unobserved interaction cannot occur or whether it 
simply did not occur at a particular site.

Some of the uncertainty about χij could be addressed by 
drawing on the rich literature about interaction contingencies. 
Phenological matching (Miller- Rushing, Høye, Inouye, & Post, 
2010), species preferences (Novak & Tinker, 2015; Pires et al., 
2011) and fear effects (Luttbeg & Kerby, 2005) all affect the prob-
ability of an interaction and could be included in models similar to 
trait- matching models. Some studies attempt to reduce uncertainty 
by sampling intensively over a short period of time and restrict-
ing the scale of interest to interactions occurring at the sampling 
site and time (conflating χij and λij) (Bartomeus, 2013; Weinstein 
& Graham, 2017b). This approach does reduce local- scale uncer-
tainty but is not appropriate if we wish to assemble the full set of 
interactions which occur in a community (beyond the specific site 
and time of sampling). In contrast, expanding sampling to cover a 
broader spatial or temporal range (e.g. sampling in a variety of mi-
crohabitats or during a variety of weather conditions) will help to 
reduce uncertainty about χij by including a broader range of param-
eters affecting interaction probability. It is unlikely, however, that 

F IGURE  1 Nested levels of uncertainty mean that an observed 
interaction matrix is unlikely to capture all of the interactions 
that truly occur. Some feasible interactions (black squares in True 
matrix) are less likely than others (grey squares; lighter grey is less 
likely) based on species traits. For example, lions are less likely to 
predate upon elephants than zebras. If our trait model is incomplete 
(e.g. if we neglect group hunting in lions), we might assume that 
elephants are too large to be lion prey and assign this interaction 
a probability of 0. Interactions occur with different probabilities 
in any given sample. We show six example networks representing 
interactions observed over 2 days at three sites. Interactions which 
occur during fewer sampling days are less likely to be observed. Not 
all interactions are equally detectable. For example, interactions 
involving cryptic species are less likely to be observed. After 
combining these layers of uncertainty, some interactions which 
truly occur are very unlikely to be observed. The observed matrix 
(bottom) is a subsample of the true matrix where the probability 
of observing each interaction depends upon multiple layers of 
uncertainty. Note that some low- probability interactions (e.g. lion 
predation on zebra) are included while others (e.g. lion predation 
on elephants) are not. For an illustration of the way in which these 
levels of uncertainty combine in simulated data and the effects of 
uncertainty on network structure, see Appendix S1. Attributions for 
images are given in Appendix S1- A
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resources will permit researchers to sample extensively in the full 
range of sites and conditions covered by a community, and some 
uncertainty about χij will remain.

1.4 | Forbidden links

Both whether species can ever interact and whether they interact 
at a particular place and time have been discussed in the context 
of ‘forbidden links’ (Jordano, 2016). In this framework, all links 
which are prevented by spatiotemporal uncoupling, physiological 
constraints and so on, are considered ‘structural zeros’ that cannot 
be observed (Jordano, 1987, 2016). We conceptually distinguish 
between physiological constraints and spatiotemporal uncoupling 
to allow for cases in which a species is introduced to a new habitat, 
expands its range or shifts phenology (Gravel et al., 2013). In such 
cases, links which are impossible due to physiological constraints 
remain forbidden but links previously ‘forbidden’ by spatiotempo-
ral mismatch could potentially occur. When considering local re-
alisations of a metaweb, one can distinguish between interactions 
forbidden by traits and those forbidden by lack of co- occurrence 
(Gravel et al., 2018). This is not possible, however, when trying to 
identify the metaweb.

1.5 | Did we observe the interaction?

Lastly, measurement errors are a pervasive source of uncertainty 
about ecological processes. Even a feasible interaction which occurs 
during sampling (Lij = 1, Xij = 1) may still go undetected (Jordano, 
2016; Weinstein & Graham, 2017a). We can define the probabil-
ity of detecting of an interaction, Dij, given the interaction is fea-
sible and occurs, as a stochastic process with probability P (Dij|Xij 
= 1, Lij = 1) = δij. Note that Dij is a stochastic variable where Dij = 1 
if the interaction is observed and Dij = 0 otherwise, while P (Dij) is 
a continuous probability. Detection failure could happen for many 
reasons (Wirta et al., 2014). Some sources of detection failure can 
be minimised (e.g. by combining multiple sampling methods (Wirta 
et al., 2014; Jordano, 2016)), but other sources are difficult to re-
duce. For example, it may not be possible to sample some species 
directly due to conservation concerns (Lagrue & Poulin, 2015). The 
probability of detecting an interaction also depends on the duration 
of the interaction and its evidence, the species involved, and the in-
dividuals sampled (Cirtwill, Stouffer, Poulin, & Lagrue, 2016; Lagrue 
& Poulin, 2015; Weinstein & Graham, 2017a; Wells et al., 2013). As 
sampling improves, Dij should tend towards 1 but, importantly, Dij 
will vary between interactions and it is very likely that some Dij < 
1. For example, when analysing gut contents interactions involving 
prey with hard parts will be more detectable than interactions with 
quickly digested, soft prey (Alberdi et al., 2018).

In summary, an unobserved interaction could be unfeasible [P 
(Lij) = 0], be feasible but not occur during sampling (P(Xij |Lij = 1) = 0], 
or be feasible and occur during sampling but not be observed  
[P(Dij |Xij = 1, Lij = 1) = 0]. Researchers might be interested in iden-
tifying feasible interactions (i.e. reducing uncertainty about λij) or 

identifying feasible interactions that occurred locally (i.e. reducing 
uncertainty about χij). Here, we consider the former problem while 
noting that uncertainty about both χij and δij contribute to uncer-
tainty about λij. Future sampling should aim to characterise all three 
probabilities, as is possible in some studies focused on local realisa-
tions of a metaweb (e.g. Graham and Weinstein (2018); Gravel et al. 
(2018)), but for now it is often difficult to distinguish between them.

When considering a metaweb, we wish to separate unob-
served interactions where Lij = 0 (unfeasible interactions) from in-
teractions which were feasible but did not occur during sampling 
or were not detected (Figure 1). An empirical ecologist will mea-
sure the marginal probability P (Lij) = kij/nij, where kij is the num-
ber of observed interactions between species i and j, and nij the 
number of observed co- occurrences. Given this information, how 
can we reduce the uncertainty around our estimated interaction 
probability?

One obvious way to reduce uncertainty is to increase sam-
pling. High sample sizes will reduce uncertainty about the upper 
bound of λij and increase the probability of detecting unlikely or 
cryptic interactions (where Lij = 1 but χij or δij is low). In some sys-
tems, targeted sampling could also reduce especially high uncer-
tainties about λij, but this will not be possible everywhere (e.g. in 
host–parasitoid systems where parasitoid identities are unknown 
during sampling). High- quality sampling is crucial in studies of em-
pirical networks, but there are limits to the ability of sampling to 
reduce uncertainty (Appendix S2, Figure S2). As a complement to 
improved sampling, we can also reduce uncertainty by leveraging 
prior knowledge about the system using a Bayesian approach, as 
detailed below.

2  | APPROACH

2.1 | A Bayesian framework for interaction 
probabilities

The basis of a Bayesian approach to modelling the probability that an 
interaction between species i and j occurs (λij) is combining the maxi-
mum likelihood estimate (MLE) of λij with a prior distribution (de-
scribed in the next section) and a normalising function. The MLE of 
λij can be computed from the number of observed interactions kij and 

observed n co- occurrences nij:�ij =
kij

nij
. The most appropriate prior 

distribution for λij is the beta distribution:

which has two shape parameters, αij and βij.
The shape parameters, or hyperparameters, may be set to par-

ticular values or derived from data (see below). They may be the 
same for all interactions, allowed to vary independently across in-
teractions, or incorporate non- independence between interactions 
(e.g. when the shape of the prior distribution depends upon species’ 
abundances or traits). For example, a prior could account for the 
tendency for abundant species to interact more frequently with all 
possible partners than rare species.

�ij∼Beta(�ij,�ij)
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Combining the prior distribution with the MLE of λij derived from 
observed data, we obtain a posterior distribution of λij that also fol-
lows a beta distribution with new hyperparameters ��

ij
=�ij+k and 

�
�

ij
=�ij+n−k (Appendix S3). These definitions illustrate the influence 

of the prior on the posterior distribution: the difference between 
the posterior and the prior will increase with kij and nij − kij. The dis-
tribution of λij for better- sampled pairs of species relies less on the 
information used to build the prior distribution and more on the ob-
served data. As nij increases, the total uncertainty about λij decreases 
(Figure 3). Note that these models of λij are designed to (a) quantify 
and (b) reduce the total uncertainty about λij. They do not distinguish 
between sources of uncertainty except through the choice of prior.

2.2 | Choosing a prior distribution

The prior used reflects a study's goal, the amount of prior knowledge 
available and the strength of researchers’ belief in that knowledge. 
Note that there is no ‘correct’ prior as long as the true distribution 
of interaction probabilities is unknown (Spiegelhalter, Myles, Jones, 
& Abrams, 2000). The goal is to select a prior that reflects reason-
able assumptions about the true distribution and then adjust it with 
observed data as it becomes available. When in doubt, it is also pos-
sible to model interaction probabilities using a variety of priors and 
compare results (Spiegelhalter et al., 2000).

Some researchers are reluctant to adopt Bayesian approaches 
because of their perceived subjectivity (i.e. a metaweb simu-
lated using a Bayesian distribution will depend upon the assump-
tions inherent in the prior). We argue that one of the advantages 
of the Bayesian approach is that it makes this subjectivity explicit 
(Spiegelhalter et al., 2000). Researchers compiling empirical net-
works face many decisions about defining community boundaries, 
the set of species to include in the focal community (Jordano, 2016), 
the most appropriate type of sampling (Wirta et al., 2014) and so 
on. These choices all affect the network obtained and most do not 
have clear answers, making all empirical networks (and all theoret-
ical networks, which likewise depend upon the assumptions used 
to build the network) somewhat subjective. In addition, research-
ers identifying ‘forbidden links’ inherently rely on prior knowledge 
to identify these links (Jordano, 2016). Stating that an interaction 
is ‘forbidden’ is, in effect, applying a very strong prior to reduce/
eliminate uncertainty about the non- observation of that interaction. 
This is especially true when researchers assume that any species 
not observed co- occurring could not ever interact. Given the reality 
of subjective network construction, we feel it is better to make the 
assumptions used to build a network as explicit as possible so that 
these assumptions can be questioned, compared between studies, 
tested, and perhaps validated.

2.3 | Uninformative priors

If researchers wish to capture uncertainty in their data without ap-
plying any assumptions or prior knowledge, they can select αij and 
βij to produce an intentionally uninformative prior (Berger, 2006; 

Leyland & Davies, 2005). This prior can be given a low weight, 
such that any observed data will outweigh the prior distribution. 
For pairs of species with little or no observed data, an uninforma-
tive prior will leave large variance about λij and reflect our lack of 
knowledge about the pair. Since we model λij as a Bernoulli trial, 
the appropriate uninformative prior is the Jeffreys prior: a beta 
distribution with αij = βij = 0.5. Note that this prior assumes that 
interaction probabilities are uniformly distributed between 0 and 
1, giving an estimated connectance of 0.5; this is likely unrealistic 
for most networks. The sum of αij and βij is roughly equivalent to 
the weight of the prior, so the Jeffreys prior has equal weight to a 
single observation.

2.4 | Informative priors

We often have some prior knowledge which can inform uncertainty 
about interactions. One common example is the well- justified as-
sumption that plants never consume animals in a food web; exclud-
ing carnivorous plants, it is not contentious to say that we are certain 
that unobserved links indicating plants feeding on animals truly do 
not occur. Similarly, if we observed two species which are normally 
obligate mutualists co- occurring but not interacting, we would be 
very doubtful that a zero reflecting this interaction was true (i.e. high 
uncertainty about this zero). It is straightforward to extend the in-
tuition behind these special cases to the full set of species in a net-
work using trait- based models if the traits likely to affect interaction 
probabilities are known (e.g. Gravel et al. (2013); Bartomeus et al. 
(2016); Weinstein and Graham (2017a)). Informative models could 
also include information on abundances, phenological matching, co- 
occurrence and so on as available (Gravel et al., 2018; Jordano, 2016; 
Weinstein & Graham, 2017b). Multiple sources of information can 
be combined into a single model (e.g. the K nearest neighbour (KNN) 
algorithm, which identifies likely interaction partners based on simi-
larity to known partners (Desjardins- Proulx, Laigle, Poisot, & Gravel, 
2017)). This would result in a highly informative prior that would, 
moreover, account for some of the non- independence in interaction 
probabilities.

Using an informative prior tailors the level of uncertainty sur-
rounding each interaction and may account for non- independence 
of interactions (as in abundance- based or KNN models). Despite 
these benefits, informative priors often involve many assumptions 
and carry a risk of overfitting. Also, note that researchers wishing 
to test whether a particular trait influences interaction probabilities 
should either exclude that trait from their prior or model the net-
work using priors which include and exclude the trait of interest (as 
in Weinstein and Graham (2017b)).

Alternatively, if information on the traits affecting interac-
tion probabilities is lacking, one can develop a prior based on the 
properties of a set of published networks (‘empirical’ or ‘reference 
Bayes’; Spiegelhalter et al. (2000)). This type of prior does not vary 
between species pairs but entails only one assumption: that the 
focal network has similar structural properties to those of some 
published networks. For example, connectance (C = N/S2, where 
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N is the number of interactions and S is the number of species) is 
available for many networks. The distribution of published con-
nectances can be used to predict the distribution of interaction 
probabilities in a new network that is similar to those used to con-
struct the prior (same type of interaction, similar taxonomic reso-
lution, habitat, etc.).

If we know the mean ̄C and variance �2
C
 of a distribution of con-

nectances, then the hyperparameters are:

Note that here the prior distribution will be the same for all 
interaction probabilities. It is also possible to interpret other 
network properties (e.g. species degrees) in a similar net-
work(s) as interaction probabilities and use these to create a 
prior (worked example in Appendix S4). When using network 
summary statistics or degree distributions, it is important to 
consider whether the available information reflects what we 
believe about the network. Given the likelihood that most pub-
lished networks are undersampled (Jordano, 2016), it may be 
wise to include only the highest quality networks available in a 
prior. Likewise, only the degree distribution for a similar system 
is likely to be a reasonable prior for a focal system. For example, 
if the focal system is large and contains a diverse array of spe-
cies, it would be inappropriate to use a prior distribution drawn 
from a small network describing closely related taxa (demon-
strated in Appendix S7). Similarly, data from a network where 
nodes are resolved to different taxonomic levels than the focal 
network are likely to have quite different properties and would 
not be an appropriate prior.

If a similar dataset is not available, it is also possible to use 
data from the study at hand to develop a prior (i.e. ‘approximate 
Bayes’ Gelman (2016)) (Spiegelhalter et al., 2000). This approach 
is used in medical testing (Spiegelhalter et al., 2000) and disease 
modelling (Leyland & Davies, 2005) using information from pilot 
studies and can easily be applied to ecological systems. Returning 
to the example of degree distributions, approximate Bayes allows 
us to use information from abundant and easily sampled species to 
predict interaction probabilities for species which were observed 
only rarely. Despite its practicality, approximate Bayes has been 
criticised for being overly subjective (Berger, 2006) and because 
estimating hyperparameters from data serves as an approximation 
of some true hyperparameters which remain unknown (Gelman, 
2016). We therefore encourage researchers to carefully consider 
whether external data or an appropriate trait model is avail-
able before opting for a prior based on some of their own data. 
Nevertheless, there are likely to be many situations where approx-
imate Bayes provides the best way to describe the uncertainty in 
the dataset. We therefore illustrate this approach in the following 
empirical example.

3  | EMPIRIC AL E X AMPLE

To illustrate the process of constructing a Bayesian network to quan-
tify uncertainty about interactions, we use the comprehensively 
sampled system of willows (Salix), herbivorous gallers and their natu-
ral enemies described by Kopelke et al. (2017). This dataset consists 
of a single community type sampled across Europe over 29 years 
and at 374 unique locations. The meta- network consists of 1,173 dif-
ferent interactions between 52 Salix nodes, 92 herbivore nodes and 
126 natural enemy nodes (Appendix S5). The high spatiotemporal 
resolution of this dataset makes it ideal for illustrating the difficulties 
in completely sampling a network; even with such an unusually high 
sampling effort, there were many pairs of species which were rarely 
or never observed together and about which we therefore have 
high uncertainty about interaction probabilities (Figure 2). Using the 
Bayesian framework above, we can identify which potential inter-
actions are more and less uncertain, allowing us to better predict 
the true structure of the metaweb. We calculated an empirical prior 
and computed the posterior distribution of the probability of an as- 
yet- unobserved interaction being feasible (λij). We analysed both the 
Salix–galler and galler–natural enemy components of the network 
but, for brevity, present only the latter here (see Appendix S6 for 
Salix –galler results).

3.1 | Computing the prior and posterior 
distributions

To treat each interaction as a Bayesian probability, we combine 
observed data with a distribution based on prior information. As 
we lack a trait- based model or similar published network, we use 
data from a single subnetwork from the middle of the geographi-
cal distribution of the Kopelke et al. (2017) dataset to inform our 
prior distribution. This simulates an empirical Bayes model using 
a pilot site to inform the prior distribution. A site in the middle of 
the geographical distribution was selected in order to minimise bias 
towards species at any geographic extreme. To demonstrate how a 
poor choice of prior can give unreasonable posterior distributions, 
we repeated our analyses using priors derived from a much smaller 
system (Appendix S7).

To obtain priors, we estimated interaction frequencies based on 
the normalised degree of each species (details and code in Appendix 
S8). Using these prior parameters, we then estimated the posterior 
distributions of interaction probabilities λij. For species without ob-
served interactions (n = 0), the posterior distribution is identical to 
the prior distribution. For species where n > 0, we can update the 
prior distribution with data. If we consider only pairs of species 
which were observed co- occurring but not interacting, kij is always 
0 and only nij will vary between species pairs. This gives ��

ij
=�ij and 

�
�

ij
=�ij+nij. We calculated posterior distributions and 95% credible 

intervals (function ‘credible interval’; Appendix S9) for species with n 
ranging between 0 and 374, the total number of sites in our dataset.

Rather than credible intervals for a posterior distribution after 
collecting data, we may be interested in the number of observations 

(2)𝛼ij=
̄C

(
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necessary to be confident that two co- occurring species do not in-
teract (note that the beta distribution can never equal 0 or 1). The 
number of samples needed will depend on our desired level of con-
fidence and the threshold below which we assume that two species 
are unlikely to ever interact. We calculated the number of samples 
required to reach 95% confidence that λij was below thresholds of 
0.1, 0.05 and 0.01 as examples (function ‘samples for threshold’; 
Appendix S9). Finally, we may be interested in measures of network 
structure. We can use posterior distributions of interactions to gen-
erate plausible ‘true’ networks that would be obtained if sampling 
uncertainty could be eliminated and use these networks to estimate 
many network properties (worked example in Appendix S10).

4  | EMPIRIC AL RESULTS

In the Salix - based food webs sampled by Kopelke et al. (2017), most 
pairs of gallers and natural enemies (9,794/12,096) never co- occurred 
and, for species that did occur together, the total number of co- 
occurrences was generally low (mean = 3.87, median = 2; Figure 2a). 
The bulk (92.24%) of these co- occurring species pairs were never 
observed interacting. Of those pairs that did interact, the incidence 
of interaction was also low (mean = 4.04, median = 2; Figure 2b) and 
was lower than the number of observed co- occurrences (Figure 2c).

We obtained prior parameters of αij = 0.700, βij = 8.49, giv-
ing a beta distribution strongly skewed towards 0. Where n = 0, 
these parameters gave a posterior distribution with �̄�ij=0.076, 
var(λij) = 0.008. When n = 374, we obtained a posterior distribution 
with �̄�ij=1.83×10−3, var(λij) = 4.76 × 106. This distribution is very 
close to 0 with small variance about λij; if species i and j co- occurred 
374 times without interacting, they are extremely unlikely to do so 
at other sites or times.

For most pairs of species i and j, nij was much less than 374 and 
our posterior mean and variance therefore retain more of the in-
fluence of the prior. We can see this in the increasing means and 
variances as we decrease nij (Figure 3; Appendix S11). To be 95% 
confident that the probability of interaction is below 0.1, 0.05 or 
0.01 would require 15, 39 and 229 observed co- occurrences respec-
tively. Note that these are relatively large sample sizes compared 
to currently available empirical networks (e.g. Morris, Gripenberg, 
Lewis, & Roslin, 2014).

5  | DISCUSSION

Real interaction networks vary over several dimensions (Baiser et al., 
2012; Fodrie et al., 2015; Kitching, 1987; Novak & Tinker, 2015; 
Olesen et al., 2011; Pires et al., 2011), leading to pervasive underes-
timation of interactions in published networks (Jordano, 2016). Even 
in the most extensive dataset that we could find, there was very lit-
tle empirical data for each species pair. Most pairs of species were 
not observed co- occurring even once, less than 10% of species pairs 

F IGURE   2 Despite the high replication in our empirical 
dataset, most galler–natural enemy pairs were never observed 
co- occurring and those that co- occurred rarely interacted. (a) 
Histogram of the number of pairs of species observed co- 
occurring at least once. 9794 galler–enemy pairs were never 
observed co- occurring (not shown). (b) Histogram of the number 
of observed interactions between co- occurring species. Species 
which co- occurred but never interacted are included. (c) For each 
species pair, the number of observed interactions plotted against 
the number of observed co- occurrences. The red dashed line 
indicates a 1:1 relationship
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were observed interacting, and no pairs were observed to co- occur 
frequently enough to conclude that their probability of interacting 
was below 0.01. This suggests that limited sampling is a major source 
of uncertainty in empirical networks, in agreement with Jordano 
(2016); Weinstein and Graham (2017b).

Although 374 sampling sites were not enough to obtain sufficient 
observations of all species pairs, we were able to reduce uncertainty 
about many potential interactions using a simple Bayesian framework. 
This framework allowed us to set confidence intervals about the prob-
ability of an unobserved interaction occurring based on the distribu-
tion of interactions in one ‘pilot’ site. This gives us more reasonable 
estimates of interaction probabilities than assuming that no unob-
served interactions actually occur. Such approaches are particularly 
useful when considering interactions involving species entering new 
ranges due to climate change or introductions. Our framework could, 
for example, be used to predict the probability of interaction between 
a galler and parasitoid at a new site on the frontier of their ranges. If 
the species have not been observed co- occurring at other sites, we 
would expect them to interact with a probability of approximately 0.1 
rather than assuming that they will not interact because they have not 
been observed interacting elsewhere (Figure 3). Understanding spe-
cies’ interactions in novel or changing communities is important for 
a variety of conservation questions (Bartomeus, 2013; Gravel et al., 
2013), and a Bayesian approach using a trait- matching model or data 
from species’ current ranges could help us to anticipate how species 
will integrate into new communities.

Note that, as in all Bayesian analyses, our results do depend on 
the prior chosen. To demonstrate this, we repeated our analyses 

using a prior derived from a study of gallers found on several 
genotypes of Salix hookeriana and the parasites which emerged 
from them (Barbour et al., 2016; Barbour, 2016; Appendix S7). 
Although the study system is similar to that in Kopelke et al. 
(2017), the network is quite different due to using different gen-
otypes of a single Salix species rather than several Salix species as 
the basis for sampling. While this had a relatively small effect on 
our expectations for the galler–parasitoid community (Appendix 
S7), the prior based on (Barbour et al., 2016) resulted in very high 
probabilities of interaction between Salix and galler pairs that 
were not observed interacting (Figure 4). No amount of addi-
tional sampling would allow us to conclude that a given Salix –gal-
ler pair did not interact with a threshold interaction probability 

F IGURE  3 Posterior distributions for the interaction probability 
(λij) for two species that have not been observed interacting 
(kij = 0), based on a single site (Zillis in Graubünden, Switzerland) 
from Kopelke et al. (2017). Posterior distributions (curves) and 95% 
credible intervals (lines at top of panel) for λij narrow and approach 
zero as the number of observed co- occurrences (nij) increases. 
Diamonds indicate the maximum likelihood estimator for the 
mean probability of interaction. Dashed lines indicate threshold 
probabilities of 0.01, 0.05 and 0.1. The number of samples required 
to obtain a 95% credible interval below each threshold increases 
rapidly. It takes just over 20 observed co- occurrences to be 95% 
confident that λij < 0.10 but over 100 co- occurrences to be 95% 
confident that λij < 0.01
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F IGURE  4 Posterior distributions for the interaction probability 
(λij) for two species that have not been observed interacting 
(kij = 0), (a) based on a single site (Zillis in Graubünden, Switzerland) 
from Kopelke et al. (2017) and (b) based on a network describing 
interactions between gallers and several genotypes of Salix 
hookeriana from Barbour et al. (2016). Posterior distributions 
(curves) and 95% credible intervals (lines at top of panel) for 
λij narrow and approach zero as the number of observed co- 
occurrences (nij) increases. Diamonds indicate the maximum 
likelihood estimator for the mean probability of interaction. Dashed 
lines indicate threshold probabilities of 0.01, 0.05 and 0.1. Note 
that both priors constrain the MLE of λij above 0.1 and that the 
posterior probability distributions become similar for very high n
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of 0.01. This is reasonable for the situation described in Barbour 
et al. (2016), as it is very likely that gallers which can interact with 
one S. hookeriana genotype can interact with most others, but is 
not reasonable for the more diverse community in Kopelke et al. 
(2017). This demonstrates the importance of conducting a ‘san-
ity check’ on the posterior distribution obtained from any given 
prior.

We conclude with some recommendations for improving de-
scriptions of interactions. While researchers are not likely to ob-
serve all interactions in a network (Jordano, 2016), they can take 
steps to address the uncertainty this implies. First, sample sizes 
should be as large as possible. Second, researchers should acknowl-
edge the varying levels of confidence surrounding interspecific in-
teractions. Including the n and k values for each interaction will 
clearly indicate which unobserved interactions are most likely to 
be observed with further sampling and which estimates are more 
reliable, as well as indicating potential sampling biases. Where 
there are strong prior expectations about pairs of species that will 
not interact, these should be explicitly stated so that readers know 
which zeros in an interaction matrix are based on observed data 
and which are based primarily upon expert knowledge. Third, the 
uncertainty around interactions should be incorporated in calcu-
lations of network properties. Resampling networks based on a 
probabilistic understanding of networks is straightforward and 
gives distributions for network properties rather than point esti-
mates. This not only acknowledges the fact that interactions vary 
over time and space but will also facilitate comparisons between 
networks by adding confidence intervals to estimates of network 
properties (worked example in Appendix S9). This will allow us to 
say whether networks have different structures and whether those 
differences are greater than we would expect given the inherent 
variability of interactions. To facilitate the practical application of 
these recommendations, we provide all code used in this paper in 
the supplementary material.
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