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Dynamical shifts between the extremes of stability and collapse are hallmarks of
ecological systems. These shifts are limited byand changewith biodiversity, com-
plexity, and the topology and hierarchy of interactions. Most ecological research
has focused on identifying conditions for a system to shift from stability to any
degree of instability—species abundances do not return to exact same values
after perturbation. Real ecosystems likely have a continuum of shifting between
stability and collapse that depends on the specifics of how the interactions are
structured, as well as the type and degree of disturbance due to environmental
change. Herewemap boundaries for the extremes of strict stability and collapse.
In between these boundaries, we find an intermediate regime that consists of
single-species extinctions, which we call the extinction continuum. We also
develop a metric that locates the position of the system within the extinction
continuum—thus quantifying proximity to stability or collapse—in terms of eco-
logically measurable quantities such as growth rates and interaction strengths.
Furthermore, we provide analytical and numerical techniques for estimating
our new metric. We show that our metric does an excellent job of capturing
the system’s behaviour in comparison with other existing methods—such as
May’s stability criteria or critical slowdown. Our metric should thus enable
deeper insights about how to classify real systems in terms of their overall
dynamics and their limits of stability and collapse.
1. Introduction
System stability and collapse are core concepts for ecology and complex systems
that have been studied both theoretically and empirically. The emerging picture of
stability is multi-faceted. Over the years many features of ecosystems have been
posited as stabilizing factors such as restricted number of trophic levels [1], hier-
archical interactions [2], compartmentalization [3], existence of specific species
interaction motifs among the interactions [4,5], long weakly interacting trophic
loops [6], large numbers of prey or predators per species [7], number of mutualis-
tic partners [8], structural asymmetry [9], nestedness [10], species body-size ratios
[11], species functional complementarity [12], correlations in species interaction
strengths [13], trophic coherence [14], and adaptive foraging [15]. Moreover,
some features are not purely stabilizing or destabilizing and can interact in non-
trivial ways [16,17]. In addition, there are multiple perspectives on stability,
including resilience and resistance [18,19] as well as many ways to represent the
web of interactions between species in an ecosystem (trophic [9,11,20], mutualistic
[21,22], antagonistic [23], competitive [24], mixed [25,26] and multilayer [27]).

Properties of ecosystem stability can be evaluated using dynamicalmodels. Two
examples are the analysis of stabilizing effects of interaction modules with few
species [1,28], and modelling systems with large numbers of species [29–31]. Pio-
neering work on system stability was done by Robert May who used random
matrix theory to show the importance of system complexity measured by biodiver-
sity (defined as species richness), number of interactions, and variance of interaction
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strengths [32]. InMay’s model complexity can be detrimental for
stability, an insight that ran counter to thepreviousparadigm that
complexity begets stability through functional redundancies or
because of less reliance on a single keystone species [33,34].
This paradigm was based on observations that ecosystems
with few species, like agricultural soils, could collapse due
to large fluctuations in population abundances of pests. In con-
trast, species-rich and highly complex ecosystems, like the
Amazon rainforests, had not been observed to exhibit such
large fluctuations [35].

One of May’s key contributions was to introduce a com-
plexity boundary where an ecosystem loses stability. The
existence and location of a complexity boundary has been
the focus of nearly five decades of work and is still an
ongoing debate. Examples of recent studies include biologi-
cally inspired interactions, such as modular [16], exclusively
predator–prey interactions [36] and interaction diversification
[31]. Some of these features shift the boundary to higher
levels of complexity, but an upper limit still exists above
which the system will lose stability.

There are several different criteria for stability that are
related to the equilibrium state of species abundances. In
the context of this paper, resilience means that the system
will return to the exact same equilibrium state following a
perturbation in species abundances. Another type is struc-
tural stability, which means that small changes in system
properties—growth rates, interaction structure—do not lead
to drastic changes, such as species extinctions [37]. Persist-
ence is another aspect of stability, measured by the fraction
of species out of the initial biodiversity that are present at
equilibrium [3,21,38]. These criteria have been discussed
extensively in the literature but rarely in concert [39,40].

Here, we revisit random interaction matrices to develop a
framework that includes all these aspects of stability. We
show that taking persistence into consideration in the analysis
of complexity boundaries typically leads to two boundaries,
instead of one. The first boundary is between strict stability
(SS), where systems are both structurally stable and resilient,
and an extinction continuum (EC) where systems are structu-
rally unstable but still resilient. The second boundary is
between the EC and collapse (C) with possible chaotic
dynamics, limit cycles, or a new fixed point with substantial
loss of species. As such, the EC represents an intermediate,
previously overlooked but ecologically important regime
between these two boundaries.

Furthermore, we can estimate the location of the two
boundaries, the system’s persistence, and proximity to col-
lapse in the EC, based only on measurable quantities of real
systems. In contrast to previous studies we do not rely on
the initial biodiversity that cannot be observed [40,41].
Thus, we extend the current knowledge and toolkit by pro-
viding a framework and a metric that can predict a
system’s likely responses to change, both in terms of single-
species extinction and system-wide collapse.
2. Model and methods
2.1. Mapping system responses from strict biodiversity

stability to collapse
To predict an ecosystem’s resilience as well as structural stab-
ility we locate boundaries and regimes in parameter space
(including standard deviation of interaction strength,
biodiversity and connectivity) and derive a metric in terms
of measurable quantities to place the system within this
space. To capture responses we analyse large generalized
Lotka–Volterra (GLV) models

dxi
dt

¼ xiri 1� xi
Ki

� �
þ sxi

XN
k¼1;k=i

Aikxk, (2:1)

where N is the number of species, xi are species abundances
and, ri and Ki are the intrinsic growth rates and carrying
capacities for each species i. A is a weighted N ×N adjacency
matrix that encodes the interaction strengths (fluxes of bio-
masses and other materials or processes) between all species
(except intra-specific interactions, i.e. Aii= 0) and Aij the
specific strength of how species i is affected by species j. The
connectance, c, is the probability that an off-diagonal entry
of A is non-zero, and we sample interaction strengths from a
normal distribution with mean μ = 0 and a variance of 1. The
parameter σ tunes the standard deviation of interspecific inter-
action strengths. The absence of structure in the interaction
matrix is chosen as a starting point when extending the analy-
sis to include the different aspects of stability. We believe that
the conclusions carry over to more biologically structured sys-
tems. Preliminary investigations confirm this, but a more
rigorous investigation is saved for future work.

Setting Ki = ri = 1 for all species retrieves the interaction
matrix corresponding to the Jacobian used by May (σA− I )
also inheriting the fact that when σ = 0 this represents a
system with only self-competitive and isolated primary
producers. The fixed-point abundances x�i of the system are

x�i ¼ Ki=ri ri þ s
XN
k¼1

Aikx�k

 !
or
x�0;i ¼ 0:

(2:2)

Note that the fixed points can include species with zero
abundance, interpreted as species extinctions. A fixed point
without extinct species is called feasible. By allowing for
extinctions we explicitly include persistence (fraction of
non-extinct species) when mapping the region of resilience
(defined as local stability of the fixed point). This means
that N is the initial biodiversity whereas the actual biodiver-
sity is the number of species, n, with positive abundance at
the fixed point at the time of measurement. In figure 1a we
show how the fixed points for a specific system with fixed
interactions and parameters (A, c, μ, K and r) change as σ
increases. Importantly, single-species extinctions occur as a
response to increased complexity (measured here by σ) well
before the complexity boundary introduced by May.

When analysing these systems we are tracking the same
fixed point while increasing σ. The resilience is determined
by the eigenvalues of the community matrix at this fixed
point (mathematically equivalent to the Jacobian matrix J*).
We keep only non-extinct species in the stability analysis
and the resulting reduced community matrix is

J�ij ¼ sx�i A
�
ij � dij

r�i
K�
i
x�i þ sx�i A

�
ij

� �
or

J� ¼ X�(sA� �D�),

(2:3)

where the superscript asterisk means that we only include non-
extinct species.A* is a reduced interactionmatrix. TheX* andD*
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Figure 1. Effects on stability of increasing interaction strength in a complex system. (a,b) Example simulation of a system with initial biodiversity, N = 100, con-
nectance (fraction of realized species interactions), c = 0.5, ri = Ki = 1, and μ = 0 for the mean of the distribution of interspecific interaction. The plot shows the
species abundances (a) and the real part of the leading eigenvalue (b) at resilient fixed points for increasing values of the standard deviation of interaction strength,
σ. Three phases of system behaviour, strict stability (SS), extinction continuum (EC) and collapse (C) are indicated by the different shades of grey. The first extinction
and collapse boundaries σf and σc respectively are indicated by the dashed black lines. Up to the first extinction, the system is in a feasible (all N = 100 species are
non-extinct, x�i . 0), resilient and structurally stable fixed point. After the first extinction, the system enters a phase of dynamic self-regulation of complexity via
successive single-species extinction, where it is resilient but structurally unstable. This phase includes the complexity limit introduced by May for the initial bio-
diversity (brown dashed line) and ends where the fixed points lose resilience altogether. The eigenvalue with smallest negative real part clearly displays the
difference in stability behaviour between analysis including and excluding extinctions (b). The real part of the leading eigenvalue of the reduced community
matrix (blue line) fluctuates below zero due to single-species extinctions, while the real part of the leading eigenvalue in May’s framework without extinctions
(blue dashed line) increases linearly and passes through zero at s � ffiffiffiffi

cN
p

. For further clarification, the insets show the eigenvalues for May’s model at the
transition points of the system, the brown circle indicating the maximum radius of resilience.
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are diagonal n × n matrices with x�i and (r�i =K
�
i þ sAii) on the

diagonal respectively. The δ represents the identity matrix, i.e.
δij equal to one when i = j and zero otherwise. We treat the
zero abundances at the fixed point as extinctions. In electronic
supplementary material, section 1, we discuss systems in
which species have a chance to re-invade [41,42].

For resilience the real parts of all eigenvalues must be nega-
tive. When at least one eigenvalue has a positive real part the
system is unstable because a change in species abundance
caused by a small disturbance will increase exponentially.
Changes in parameters (e.g. σ) that cause the real part of the
eigenvalue with the smallest negative real part (henceforth
defined as the leading eigenvalue) to approach zero are usually
considered to cause destabilization, often interpreted as a pre-
amble to collapse. Mathematically, however, collapse is not
necessarily implied.

Indeed, in the EC the real part of the leading eigenvalue
fluctuates at or just below zero (figure 1b). The key observa-
tion is that single-species extinctions help the system to stay
resilient and prevent collapse. Extinctions and stability aspects
of the GLV model are demonstrated in figure 1. The system
response divides into three distinct phases while increasing σ.
The first phase, strict stability (SS), is characterized by a
fixed point that is resilient, structurally stable and feasible
(including the full initial biodiversity). The real part of the
leading eigenvalue is negative but approaches zero from
below as σ increases, at the same rate and magnitude as the
smallest species abundance approaches zero [43]. The bound-
ary of the SS phase is located where the real part of the
leading eigenvalue reaches zero and the first single-species
extinction occurs.

In the second phase, EC, the system can uphold resilience
with the real part of the leading eigenvalue below zero, by
single-species extinctions. However, because of extinctions the
system is structurally unstable and with only a subset n of the
initial species N. These extinctions occur when σ increases, but
also for decreasingσ, discussed further in electronic supplemen-
tary material, section 2. This implies that perturbations of
systems in this region typically cause extinctions but not a
system-wide disruption.
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Figure 2. Predicted persistence. The plot shows the average persistence from
simulations of systems ranging from N = 20 to N = 1000 (blue dots) with
one standard deviation error bars and predicted persistence for randomly
generated interaction matrices A in the same system size range (grey
dots) with one standard deviation error bars. The background shading indi-
cates the three phases of behaviour with the boundaries at the theoretical
predictions. The difference between predicted persistence and simulated per-
sistence in the collapse (C) phase is because when simulating we set a
system’s size to zero after collapse. Including these causes the statistics of
the fraction n/N for the simulated systems to tend to zero. Before this arti-
ficial drop towards zero in the simulated fraction in the C phase we can
predict the persistence well in the extinction continuum.
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In the third phase, collapse, no stable fixed point without
radical system change is found, and the system’s behaviour
is unpredictable. There is the possibility of limit cycles, chaotic
behaviour, or a substantial decrease in the number of viable
species, resulting in a biodiversity well below the level at the
collapse boundary. This implies that systems are structurally
unstable until the collapse boundary, but they typically
undergo more radical qualitative changes than single-species
extinctions if pushed to higher complexities.

Note that these three phases are present for the majority of
systems with generically chosen intrinsic growth rates ri. The
EC phase can always be eliminated if growth rates and/or car-
rying capacities are specifically chosen for such a purpose for a
specific A, but such choices violate the assumption of
randomness.

With figure 1 in mind it is clear that assuming feasibility
[16,26,31,36,44] amounts to incorrect predictions of collapse
since it ignores single-species extinctions as a stabilizing
mechanism (upholding resilience). Or stated differently, for
random systems the parameter region of feasibility is a
subset of the region of resilience as noted by [43] for competi-
tive/mutualistic systems, [39] including cascade and niche
structured food webs and [45] showing the universality of
the feasibility region. The boundary May introduced states
that a random system is stable when s , 1=

ffiffiffiffiffiffi
cN

p
which

implies that fixed points are unstable for s . 1=
ffiffiffiffiffiffi
cN

p
. This

boundary based on the initial biodiversity actually falls
within the EC phase as seen in figure 1 and hence does not
predict collapse.

It is interesting to note however, that the actual collapse
occurs when the reduced system is at s � 1=

ffiffiffiffiffi
cn

p
(with a

slight upward bias), corresponding to an effective version
of the complexity boundary. This further implies that the pre-
diction still holds even though the systems that collapse at
this boundary no longer have uncorrelated species inter-
actions (electronic supplementary material, section 3 argues
for the non-randomness of systems in the EC). Instead, the
systems have been dynamically pruned in accordance to
dynamics dictated by growth rates ri and carrying capacities
Ki. Out of all possible and reasonable values and combi-
nations of ri and Ki, only a small number lead to resilient
communities that stay structurally stable for large σ. More-
over, that number decreases exponentially as system size
increases [45].
2.2. Boundaries and persistence
To construct a new metric for predicting collapse, we
derive expressions for the two boundaries surrounding the
EC as well as persistence. The first boundary between
the SS and EC phases is marked by the first extinction
event, also corresponding to when the real part of the leading
eigenvalue hits but does not pass zero (since the system size
is reduced). To locate this boundary we analyse the inter-
action matrix A using order statistics. This gives a direct
estimate of the first-extinction event rather than implicit
methods [46].

By writing the fixed-point solutions of equation (2.2) in
linear form it can be seen that the species abundances are
weighted sums of the entries of A (for full derivation see
electronic supplementary material, section 2). As sums of
random variables, the species abundances can themselves
be interpreted as random variables. They are found to be
distributed according to a normal distribution truncated
at zero

x�i � N mþ ¼ 1, s
ffiffiffiffiffiffi
cN

p� �
¼ f(x), (2:4)

where μ+ = 1 depends on the choice ri =Ki = 1 discussed
further in electronic supplementary material, section 4.2.
With this set of species abundance random variables, we
can use order statistics to obtain an estimate of the smallest
abundance in the set, in a similar manner as [22,43]. From
order statistics the distribution of the minimum (fmin(x)) of
a set of N random variables (in our case x�i ) distributed
according to f(x) is

fmin(x) ¼ N(1� F(x))N�1f(x)

¼ Ne�(x�mþ)
2=2s2cN

s
ffiffiffiffiffiffiffiffiffiffiffiffi
2pcN

p 1
2
� 1ffiffiffiffi

p
p

ð(x�mþ)=s
ffiffiffiffiffiffi
2cN

p

0
e�t2 dt

 !N�1

,

(2:5)

where F(x) is the cumulative distribution function of f (x). The
first extinction event is at the σf for which the mean of the
above distribution is zero.

To locate the second boundary between EC and collapse
we make use of a prediction of the persistence in combination
with the complexity boundary introduced by May. We pre-
dict the persistence from a reduced interaction matrix,
shown in figure 2 (for full derivation see electronic sup-
plementary material, section 5). We also know that the
complexity boundary introduced by May is a good predictor
of collapse if all species are guaranteed to be non-extinct [44].
With these two estimates we can locate the collapse boundary
for the full system

sc ¼ 1ffiffiffiffiffiffiffiffiffiffi
cNpc

p , (2:6)

where pc is the persistence at the collapse boundary (similar
pc found in [40]).
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The results above show that, when the initial biodiversity
is known, we can predict the two boundaries and approxi-
mate rate of extinctions in the EC for systems of all sizes, as
seen in figure 3.
2.3. Instability metric
As stated, if we know the initial biodiversity N, we can predict
the distance in σ-space to collapse for a system of any size
whether in the SS or EC phase, since the first extinction bound-
ary σf and collapse boundary σc are functions of N. A system
with standard deviation of interaction strength greater than
needed for the first extinction boundary (σ > σf) is situated
in the EC. This means the biodiversity n cannot equal
the initial biodiversity N. Since N cannot be measured
for real systems we estimate it from the first extinction pre-
diction σf (n) and the persistence approximation. With an
estimated initial biodiversity Npred, we can properly place
the system in parameter space and calculate its proximity
to collapse.

A first thing to note is that a system with σ < σf(n) can be
located in the SS phase (if σ is smaller but σ≈ σf the system
might be in EC). If on the other hand σ≈ σf(n) or σ > σf(n)
the system likely resides in the EC phase, and we need to
approximate the size of the initial biodiversity. Again, we
use the reduced interaction matrix A* to obtain an average
rate of extinctions for increasing σ. We use this rate to extrap-
olate backwards to σf for the approximation Npred (more
details in electronic supplementary material, section 6).

With the approximate initial biodiversity, we predict the
two boundaries for the system and construct the metric γ to
quantify the proximity to collapse

g(n) ¼ s� sf (Npred(n))
w(Npred(n))

: (2:7)
Wherew(Npred(n)) is the width of the EC, σc(Npred(n))− σf(Npred-

(n)). The metric γ is defined only in the EC and is a real number
∈[0, 1], although the boundaries of this interval are not exact
since we are inferring from the biodiversity, n. We posit that
this metric quantifies the structural instability of the system,
and that the higher the value of γ the more probable that
perturbations or external pressure will lead to collapse.
3. Results
3.1. Boundary predictions
Our theoretical estimates of first extinction and boundary to
collapse along with the complexity limit introduced by May
compared to simulation averages are shown in figure 3. The
analytic estimates are in good agreement with the results of
numerical simulations.

The predictions hold for systems with random inter-
actions between species, interaction strengths sampled from
a normal distribution with a mean of zero and variance of
one, and different sizes as shown in figure 3. In addition, in
figures S6–S10 in electronic supplementary material, section
7 we show that there are no qualitative differences in results
even if any of the assumptions about distribution, structure,
mean, ri and Ki respectively are modified. The robustness of
the existence of the EC follows from the fact that there are
exponentially many fixed points that the system can switch
between to uphold resilience. Indeed, for this reason we
expect the EC to exist in more general population models
than the GLV.

3.2. Proximity to collapse
To evaluate the γ metric we simulated systems with initial bio-
diversity that ranged from N = 20 to N = 1000 for values of σ
placing them in the EC. We calculated γ using information
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extinct for the system to find a new resilient fixed point. This effect increases
for larger γ indicating more specificity of interactions in more dynamically
pruned systems. Together the plots demonstrate that a larger γ indicates col-
lapse both in terms of a substantial loss of species (more structurally
unstable) and a higher probability of loss of resilience.
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about the non-extinct species: the interaction matrix, intrinsic
growth rates, carrying capacities and biodiversity. The pre-
dicted γ from these simulations are shown in figure 4 in
comparison to the actual γsim from simulations.

As seen in figure 4, γ follows the actual γsim closely. The
variance of the prediction increases during the EC as expected,
but the actual value is within one standard deviation right up
until collapse.

All simulations for figure 4 were performed for a standard
set-up with ri =Ki = 1, no symmetries in the interaction matrix
A, and the interactions strengths drawn from a normal distri-
bution with zero mean. For small deviations of the mean
from zero (|μ| < 0.05), the γ metric remains a reliable approxi-
mation. For larger deviations the prediction of collapse
becomes more complicated. This is due to a larger impact on
stability of the species abundances x�i and that we use the gen-
eral (σA*− I) instead of the actual Jacobian of the system
X*(σA*− I) when predicting collapse from the persistence
(since the x�i are unknown). This problem is shared with the
complexity boundary introduced by May and discussed
further in electronic supplementary material, section 8.

As an additional verification that γ quantifies proximity
to collapse, we gathered statistics for resilience of reduced
systems from the entire EC before and after perturba-
tions of its interaction matrix. The perturbation was an
addition of Gaussian noise (N (0, snoise ¼ 0:25, 0:5, 0:75)) to
all the realized interactions in the interaction matrix. This per-
turbs the variance in the interaction strength distribution and
relative interaction strengths but leaves the connectance
and topology of interactions unaltered as well as the
intraspecific interactions.

The results from these simulations can be seen in figure 5.
The top panel shows the percentage of systems that find a
resilient fixed point after the perturbation and the bottom
panel shows the relative size of the resilient communities
after the perturbation. The first thing to note is that the resi-
lient communities after perturbation are consistently of
smaller size (but have unchanged connectance electronic sup-
plementary material, section 3), even for small perturbations
(figure 5b). It is also evident that systems with larger γ are
closer to collapse and lose more species before finding a resi-
lient state, a sign of increasing structural instability. This is
consistent with our previous observation that correlations
are introduced in the dynamic reduction of systems needed
for resilience. It is also clear from figure 5a that systems
with a large γ are more likely to collapse after a perturbation.
Both these findings show γ is a metric for collapse.
4. Discussion and conclusions
We have investigated the conditions for which an ecosystem is
resilient and structurally stable. In addition, we derived a
metric that uses only measurable quantities and that quantifies
the proximity to collapse and level of structural stability. It has
been noted in various studies that both feasibility and local
stability are important concepts for ecosystems [39,40,43,47]
and that real systems tend to grow in size to the point at
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which they are structurally unstable [48]. By combining resili-
ence, structural stability and persistence, we show that there
exists parameter ranges for which a system can be resilient
but structurally unstable, an observation that introduces a pre-
viously overlooked phase in parameter space. It also shows
that for a system with random interactions, feasibility is lost
at lower levels of complexity than is resilience, which means
systems with complexity levels above the first extinction
boundary typically need non-random interaction patterns in
order to be resilient.

The EC and the accompanying behaviour of the real
part of the leading eigenvalue is relevant when trying to
predict collapse with critical slowdown—a system starts
to recover very slowly after perturbations in species
abundances—the standard method for proximity detection
[49–51]. In our analysis systems show critical slowdown
throughout the EC phase, but the slowdown only involves
one or a few species at the time (the species that will go
extinct next) as in [52]. The major transition and predictor
of proximity to system collapse however is when the
system is close to the collapse boundary and the critical slow-
down involves many species at once. In contrast to critical
slowdown our metric can be used to better predict the
location of the collapse early in the EC, when the system is
still far away from the collapsing point and show no sign
of system-wide slowdown.

It has been argued that all real systems self-organize to
structural instability [48]. The rationale behind this is that
there can always be immigration, adaptation or speciation
until the point where additional species will cause others to
go extinct. This will stabilize the community at a certain biodi-
versity but with species turnover. The idea implies that a
system self-organizes to the largest system theoretically poss-
ible [40,53], which would be at the complexity boundary
introduced by May (and its extensions from later studies
taking interaction structures into account [36,44]). This
would be the case if there is a large enough regional species-
pool from which a variety of species can immigrate or long
enough time for multiple speciations. Here, rather than a
boundary, we have shown that there is an entirely new
phase of structural instability. As we have shown, for commu-
nities more complex than the first extinction boundary,
correlations are needed, which reduce the number of species
that have the ability to invade. In case of a less diverse
species pool, it is possible that systems will stabilize in
the EC. This might even be likely since empirical studies
have found no correspondence with May’s limit [54]. Also,
in line with the hypothesis that systems will evolve to maxi-
mize structural stability [37] systems in the EC phase
are structurally unstable but less so when further from the
collapse boundary.

We argue that all systems beyond the first extinction
boundary need finely tuned, or perhaps naturally selected,
parameters to be resilient. A system can be feasible at the col-
lapse boundary for certain growth rates and/or carrying
capacities [45]. Since in our analysis growth rates and carry-
ing capacities are fixed (or drawn from a distribution), a
system can only stay resilient if correlations are introduced
through the dynamics by non-random species extinctions.
These correlations can either be within the reduced inter-
action matrix A* or between A* and the fixed-point species
abundances. The latter having the largest stabilizing effect
[55]. Correlations within A* were found to be positive for
A�
ij and A�

kj and negative for A�
ij and A�

ik [55]. This suggests
that a species having either a positive or negative effect on
the community in general and species that can balance nega-
tive encounters (for example plants competing for sunlight)
with positive encounters (for example seed dispersal) with
other species are stabilizing for a community. For predator/
prey systems we found negative correlations for both (A�

ij,
A�

kj) and (A�
ij, A

�
ik) hinting at secondary consumers, both con-

suming and being consumed, as stabilizing for food webs.
However, if this stabilizing effect remains for systems struc-
tured with trophic hierarchies is yet to be tested. It has also
been found that correlations in interaction strengths weighted
by biomass (between J�ij and J�ji) increase stability (in terms of
increasing the range of resilience) [13]. Even though this
might lead to a larger range of resilience, as we have
shown the correlations introduced by the dynamics still
make the systems structurally unstable.

The γ metric can be calculated from observable quantities
of an ecosystem that capture proximity to collapse. Since
changes in the GLV parameters (N, c, ri, Ki, distribution of
interaction strengths, and symmetries in interactions)
induce ‘mere’ shifts in boundaries we argue that γ not only
quantifies likelihood of collapse in terms of σ perturbations
but also structural stability in general. This makes γ a more
broadly applicable metric than its definition (equation (2.7))
might indicate. Inherently it also elucidates system response
behaviour beyond the feasibility region, in addition to the
feasibility investigation in [39], with extinctions acting as a
stabilizing mechanism. In [45] a different way of capturing
structural stability is proposed, measured as the size and
shape of the feasibility region of a system when varying
intrinsic growth rates. Although their approach requires a
slightly stricter resilience criteria excluding some interaction
matrices, in line with γ their results lead to decreasing struc-
tural stability with increasing σ. The structural stability
measures also differ in that γ can be evaluated for a specific
system while in [45] the measure applies to systems with
unknown intrinsic growth rates.

For the γ-metric, in addition to the GLV parameters, esti-
mates are needed for the interaction strengths for each
interaction in the matrix. Metabolic theory may help guide
this based on the size and temperature of the species involved
[56,57]. Note however that we include all types of biological
interactions. This is in contrast to many previous studies
looking for stability criteria of ecosystems that independently
focus on food webs [3,11,28] or different non-trophic inter-
actions [42,46,58]. There is always a risk of feedback
between these different aspects that may undermine the
results. Studies have highlighted such feedbacks [25,59],
and encouraging steps are being taken towards multilayer
representations of ecosystems [27]. Thus for γ to be a more
realistic measure it remains to be shown in future studies if
it can be extended to a multi-layer framework instead of
having all types of interactions in a single layer in the
interaction matrix.

Even though we posit a wide scope for γ there are impor-
tant limitations of our current study. Apart from symmetric
(mutualistic/competitive) and anti-symmetric (predator/
prey) interactions, we have not investigated the effects of
structured interaction topologies that might expand the feasi-
bility region [39]. Introducing more realistic structures such
as trophic hierarchies into the interaction matrix is an impor-
tant direction for future work. Another limitation to our
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approach, and the GLV approach in general, is that the inter-
action matrices are assumed to be rigid—static ‘averages’ of
interactions among species [60–62]. In reality interactions
might fluctuate with external factors such as seasons or
change due to adaptive foraging behaviour. Since seasonal
changes in general do not lead to extinctions, it is assumed
that they do no not introduce fluctuations large enough to
breach the limits of structural stability for systems in the
EC. Still, we do not know, for example, if cycles of interaction
strengths play a role in the stability of communities.
Studies with adaptive foragers have found that they can be
either stabilizing (in terms of structural stability) [15] or
sometimes destabilizing (in terms of secondary extinctions)
depending on timescale when compared to rigid systems
[17]. Since adaptive foraging may affect structural
stability positively but does not exclude secondary extinc-
tions, it is unclear how the EC would be affected by
changing interactions.

In conclusion we have developed a theoretical analysis to
quantify a system’s proximity to collapse based on measurable
information such as biodiversity, connectance and species
interactions strengths. The γ metric is both detectable at
larger parameter-‘distances’ from collapse and easier to evalu-
ate as compared to, for example, critical slowdown. We also
present a consistent framework that includes resilience, struc-
tural stability and persistence, in which to apply the γ
metric. Together the framework and γ metric expand our abil-
ity to estimate a system’s likely response to perturbations and
assess its risk of collapse.
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