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Abstract

Descriptions of ecological networks typically assume that the same interspecific interactions occur
each time a community is observed. This contrasts with the known stochasticity of ecological
communities: community composition, species abundances, and link structure all vary in space
and time. Moreover, finite sampling generates variation in the set of interactions actually
observed. Here we develop the conceptual and analytical tools needed to capture uncertainty in
the estimation of pairwise interactions. To define the problem, we identify the different
contributions to the uncertainty of an interaction and its implications for the estimation of
network properties. We then outline a framework to quantify the uncertainty around each
interaction. We illustrate this framework using the most extensively sampled network to date. We
found significant uncertainty in estimates for the probability of most pairwise interactions which
we could, however, limit with informative priors. Through these efforts, we demonstrate the
utility of our approach and the importance of acknowledging the uncertainty inherent in network
studies. Most importantly, we stress that networks are best thought of as systems constructed
from random variables, the stochastic nature of which must be acknowledged for an accurate
representation. Doing so will fundamentally change networks analyses and yield greater realism.
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Introduction

Representing an assemblage of species as a network offers a convenient summary of how the
community is constructed as networks simultaneously describe species composition and
interactions between species. A tabulation of the nodes (species) and their relative abundances
forms the basis for traditional metrics of community composition such as alpha diversity. To move
from these simpler metrics to a network framework, the tabulation of nodes is combined with
interactions (links between nodes) so that networks provide additional, higher-order information
on community structure. While this additional information is useful (as, for example, interactions
can affect changes in species abundances over time), empirical descriptions of ecological networks
are still limited because they are usually considered to be static representations of the
communities and interactions they describe. That is, whether the network is assembled based on
aggregated data, a single intensive “snapshot” sample, or expert knowledge, interactions are
assumed to occur deterministically wherever and whenever the community is
observed (Olesen et al., 2011).

The assumption of static communities contrasts significantly with the widely recognised
stochasticity of ecological communities (Gotelli, 2000). Community composition and species
abundances vary from site to site (Baiser et al., 2012) and over time within a site (Olesen et al.,
2011). Likewise, interactions vary over space (Kitching & Kitching, 1987; Baiser et al., 2012),
time (Kitching & Kitching, 1987; Olesen et al., 2011), and between individuals of a given
species (Pires et al., 2011a; Fodrie et al., 2015; Novak & Tinker, 2015). We emphasise that
variability in community composition and interactions may or may not be closely related. The
removal of a species from a site will obviously also remove its interactions but, conversely, the
co-occurrence of potentially interacting species does not in itself guarantee that they will interact
at a given place and time. Interactions can be lost if the interaction partners remain present but
are separated in time or are too rare to detect each other (Tylianakis et al., 2010). Interactions
can also fail to occur because of environmental contingencies (Poisot et al., 2015), or through
changes to individual preferences (Fodrie et al., 2015).

Beyond “true” variation in network structure, several researchers have pointed to the
importance of sampling intensity for the assessment of network structure (e.g., Martinez et al.,
1999; Blüthgen et al., 2006, 2007). An assessment of the accumulation of interactions with
increasing sampling effort suggests that it is even more challenging to document interactions than
species (Poisot et al., 2012). As a result, it has been proposed that interactions should be
described probabilistically and network metrics computed accordingly (Poisot et al., 2016). Early
work in this vein includes food-web models using likelihood-based approaches (Allesina et al.,
2008) or Gaussian (Williams et al., 2010) or binomial (Rohr et al., 2016) probability functions for
each possible interaction. These models may include information about species’
traits (Rohr et al., 2016) or may attempt to reproduce empirical network structures using a set of
simple rules (Allesina et al., 2008; Williams et al., 2010).

Despite these preliminary efforts, to date we lack the quantitative methodology to deal with
the uncertainty generated by spatiotemporal variation in ecological interactions and by sampling.
Even in extremely well-sampled networks, uneven sampling across species (or pairs of species) can
lead to the erroneous inference that some species do not interact because they co-occur rarely or
have not yet been observed together - even if they do interact when they do co-occur (see Box 1
for an example). Nearly all network studies will thus neglect some interactions, necessitating an
approach that acknowledges this uncertainty.

In this study, we formalise the description of interactions between species as probabilities and
develop analytical tools to capture the uncertainty in the estimation of these interactions. We
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focus on binary interactions as a first step, but the framework could be expanded to deal with
interaction frequencies and strength. To define the problem, we first identify the different
contributions to the uncertainty of an interaction and discuss the implications of each source of
uncertainty for the properties of ecological networks. Next, we develop an analytical framework to
quantify the uncertainty around interactions in an empirical web. We illustrate this framework
using the most extensively sampled network to date (Box 1). Finally, we offer tangible
recommendations for improved descriptors of ecological interactions. Through these efforts, we
demonstrate both the utility of our approach and the importance of acknowledging the
uncertainty inherent in network studies.

Why do some interactions not occur?

To define the problems associated with quantifying ecological interaction networks, we will start
from the perspective of an empirical community ecologist faced with the task of describing a
previously unknown interaction network. This ecologist will be interested in generating a
description of the species/nodes present and the links between them (Roslin & Majaneva, 2016).
Importantly, the information sought is conveyed by both the presence and absence of links.
Presences and absences are not, however, equally certain. An observed link will always remain an
observed link but there are multiple reasons why a given link may not be observed. Thus, the
detection of any interaction is a stochastic process. We define three nested levels of uncertainty
contributing to this stochasticity: interaction uncertainty, process uncertainty, and detection
uncertainty.

Interaction uncertainty

First, and most fundamentally, we do not know whether or not a pair of species have the
appropriate characteristics (or traits) to interact. We define the probability of an interaction L
given those characteristics T as P (L|T) = λ. Obviously, if k (the number of observed
interactions) is 0, it is possible that the two species would not interact even if there were no
external constraints (e.g., temporal or environmental separation) preventing the interaction from
co-occurring. As a simple example, a prey species may be too large to be consumed by a
particular predator. In such cases, λ would take a value of 0 and there would be no uncertainty.

Nevertheless, it is also possible that the interaction is a rare phenomenon with λ > 0 that has
not yet been documented. This source of uncertainty is the one documented by trait-matching
models (Bartomeus et al., 2016). It arises because every model is imperfect and lacks information
(i.e. about traits) that could be used to define constraints on the interaction (Dormann et al.,
2017). Further study may, however, eventually reveal the traits of interest and allow us to reduce
interaction uncertainty. In other words, with sufficient sampling and all information accessible,
this interaction probability λ should either tend to 0 or to 1.

Process uncertainty

Even when an interaction is feasible, i.e. L = 1, it may not occur at a given location or moment
in time because of local constraints such as inclement weather or the lack of suitable habitat. We
define the realisation of the interaction process with the variable X, given that the interaction is
feasible, as a stochastic process with associated probability P (X|L = 1) = χ. This phenomenon of
interaction contingencies is usually not considered in network studies, but there is a rich literature
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in community ecology about the contingencies of interactions. Phenological
matching (Miller-Rushing et al., 2010; Gezon et al., 2016), species preferences (Pires et al., 2011b;
Novak & Tinker, 2015; Coux et al., 2016), and fear effects of other species (Luttbeg & Kerby,
2005; Wirsing & Heithaus, 2008) are just some of the factors contributing to variation in the
frequency of interactions between a given pair of species. Although some of the factors leading to
process uncertainty can be addressed in mesocosm studies of networks (e.g., environmental
conditions can be held stable), process uncertainty is likely inevitable in the field.

Detection uncertainty

Lastly, measurement errors are a pervasive source of uncertainty in the observation of ecological
processes. Given that an interaction is feasible and occurs under the local conditions (L=1 and
X=1), we may define the detection of an interaction, D, as a stochastic process with the
associated probability P (D|X = 1, L = 1) = δ. Detection failure could happen for several reasons
including failure to rear a parasitoid, species mis-identification, or because the interaction is very
rare (see Wirta et al. (2014) for examples of some of these difficulties and partial solutions to
them). Some sources of detection error can be minimised with appropriate sampling effort (δ will
converge to one with increasing number of samples), but other sources are often difficult to reduce
(e.g. the occurrence of cryptic species might require molecular analysis for appropriate taxonomic
identification as in Wirta et al. 2014; Frost et al. 2016).

Estimating detection and process uncertainty

Together, the combination of these three sources of uncertainty –interaction uncertainty, process
uncertainty, and detection uncertainty– results in a range of potential explanations for the
observation of an absence of interaction (D, X, and/or L = 0). The ecologist wanting to describe
the network, however, is specifically interested in the situation where L = 0 (i.e., in true
absences). Thus, while there is no difficulty interpreting the observation of an interaction, the
observation of an absence of an interaction offers more of a challenge since it must be decomposed
into different quantities. It is particularly important to rule out the situations where
D = 0 ∪X = 1 ∪ L = 1, i.e. where the interaction occurred at the location but was not observed,
and D = 1 ∪X = 0 ∪ L = 1, i.e., where the interaction is feasible and would have been detected
but did not occur at the local site. The occurrence of a true absence, our quantity of interest,
corresponds to the joint event L = 0 ∪X = 1 ∪D = 1 but in reality an empirical ecologist will
measure the marginal probability P (L) = k/n where k is again the number of observed
interactions and n the number of observed co-occurrences.

The considerations above raise a major challenge: when faced with empirical data, how may
we infer whether unobserved interactions went undetected due to sampling or whether they truly
do not occur? How then may we refine our sampling approaches to reduce uncertainties, and do
we gain insights into the impact of multiple processes on field observations? Importantly, some
sources of uncertainty can be minimised with appropriate sampling design and efforts while other
sources are difficult or impossible to reduce since they are generated by chance variation created
by the very process in which we are interested. Given this multifaceted problem of uncertainty,
what can we do to separate the different types of variation and reduce those that can be reduced?

The obvious rule of thumb is to “sample more” (see Fig. 2 for a demonstration of the power of
increasing sample size). Sampling more will clearly reduce uncertainty regarding the upper bound
of the probability of interaction and it will also increase the probability of detecting unlikely
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interactions (e.g.,. interactions where L=1 but process uncertainty is high). Despite these
benefits, we note that there are limits to the utility of increased sampling. Since the probability of
observing the co-occurrence of two species will always be higher than the probability of observing
their interaction (since the probability of interaction is conditional on both interaction partners
being present; see Fig. 1E-F), we will accumulate observations of co-occurrences faster than we
will accumulate observations of interactions. Thus, the more we sample, the more zeros will
appear in our interaction matrix.

In one endeavour to determine whether unobserved interactions were undetected due to
sampling, or whether they truly do not occur, Weinstein & Graham (2017) used repeated
sampling rounds to estimate the daily probability of detecting a hummingbird interaction, and to
thereby model detection and process uncertainty. While conceptually attractive, this approach is
unsuitable for interactions occurring over longer time scales (e.g., associations between hosts and
parasitoids with a single generation per year), or very rare interactions which might not occur on
any of the sampling days or might involve individuals of a species that is not under observation.
What is worse, the problem persists that the absence of an interaction of a given day could either
be because it was impossible on that day despite being otherwise feasible
[P (X|D = 1, L = 1) = 0], because interaction did occur but could not be observed
[P (D|X = 1, L = 1) = 0], or any combination of the two. From a conceptual perspective, this
approach therefore fails to satisfactorily distinguish between sources of uncertainty. Most
importantly, if two species are never observed co-occurring during several days of sampling then
we have learned nothing about their probability of interacting if they should ever co-occur. In
other words, there is no information about interactions without co-occurrence.

An added complication is that not all sources of uncertainty are proportional to sample size.
To record an interaction between A and B, we need to identify both partners correctly (a
non-trivial problem in many food webs; e.g. Kaartinen & Roslin, 2011; Roslin & Majaneva, 2016)
and be able to resolve all interactions with a similar likelihood. For both molecular and rearing
techniques, certain types of interactions may go unnoticed due to technical
challenges (Wirta et al., 2014). This can bias the set of recorded interactions. The bottom line is
that separating different sources of uncertainty is difficult indeed. As an alternative to
abandoning empirical networks or continuing to ignore the uncertainty inherent in undetected
observations, we propose that some insight regarding the detectability of interactions between
species not found co-occurring in a focal system may be gained from data on other species pairs
in the same or a similar system.

A naive quantification of uncertainty

To progressively dissect the different contributions to uncertainty, we will start by considering
how we could naively quantify interaction probability and its associated uncertainty for an
interaction that has not yet been observed. We consider the case where a pair of species have been
observed co-occurring n times, of which they have been observed to interact in k = 0 cases. We
now aim to evaluate the uncertainty of this interaction. We consider the occurrence of an
interaction as a Bernoulli trial. Consequently, the number of successes k over n trials will follow a
binomial distribution:

X ∼ Bin(n, λ), (1)
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P (X = k|λ, n) =

(
n

k

)

λk(1− λ)n−k. (2)

The parameter λ, the probability of observing an interaction over an infinite time interval and
area, is the quantity we want to estimate from empirical data. The maximal likelihood estimate
(MLE) of λ is straightforward to find given k and n:

λMLE =
k

n
. (3)

The variance of a Bernoulli experiment is nλ(1-λ). It is important to remember that this
variance describes the variability of the number of successes k for n trials and is not the variance
associated with the estimation of λ. Given this variance, it is possible to compute the confidence
interval for the MLE of λ using any of several methods, including the Wilson score interval, the
Clopper-Pearson interval, and the Agresti-Coull interval (for details, see [Brown et al., 2001]).
Finding this estimate is therefore quite straightforward, but it nonetheless has two drawbacks.
First, λ is not a single point estimate but rather a random variable with an unknown distribution.
This means that if k = 0 in a given sample, this does not necessarily imply that the two species
will never interact. Rather, k = 0 implies that ‘no interaction’ is the most likely outcome when
the species do co-occur but there is nonetheless a substantial chance that the two species could
interact. In the situation where k > 0, in contrast, we are sure that the interaction is feasible
(L = 1) but still cannot be sure of the cause if the interaction is not observed at some sites/times
(i.e., we cannot say why k < n). There may be local constraints (X = 0) or we might simply not
observe the interaction in every sample (D < 1).

Second, where the number of samples n is very low (some pairs of species may never have been
documented as co-occurring), there will be considerable uncertainty around our estimate of λ. In
Fig. 2 and Box 2, we derive the Clopper-Pearson interval to explore how the estimate of λ varies
with sample size. At a small sample size, the 95% confidence interval spans all values of λ. To
establish that species are not interacting with any acceptable certainty requires tens of
observations of the two species co-occurring but not interacting. As most data sets will lack such
extensive sampling across all species pairs, we can use a Bayesian approach to supplement what
data we do have with other sources of information.

Bayesian approach to infer interaction probabilities

Posterior distribution of the interaction probability

Here we adopt a Bayesian approach to estimate the posterior distribution of the parameter λ :

P (λ|k, n)
︸ ︷︷ ︸

Posterior

=

Likelihood
︷ ︸︸ ︷

P (k|λ, n)

Prior
︷ ︸︸ ︷

P (λ)

P (k|N)
︸ ︷︷ ︸

Normaliser

. (4)

According to the above description, the likelihood is simply the binomial distribution (Eq. 2).
Since λ is a probability, it is bounded between 0 and 1 and the most appropriate prior
distribution is the beta:

λ ∼ Beta(α, β), (5)
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which has two shape parameters, α and β.
The beta-binomial distribution is a conjugate distribution of the binomial distribution. This

allows us to analytically compute the posterior distribution of a binomial model with a beta prior
distribution. We can re-write the posterior distribution of λ as:

P (λ|k, n) =
λα+k−1(1− λ)β+n−k−1

B(α+ k, β + n− k)
, (6)

where the function B is the beta function. The posterior distribution of λ therefore follows the
beta distribution with new parameters α′ = α+ k and β′ = β + n− k. The weight of the prior on
the posterior distribution can be understood from these parameter definitions: the difference
between the posterior and the prior will increase with k and n− k. In other words, the
distribution of λ for better-sampled pairs of species will rely less on the information used to build
the prior distribution and depend more on the observed data. When plotted, we find the shape of
the distribution gets narrower with k and n (Fig. 3).

Moments and other properties

It is common to preform analyses that require calculating higher-order network properties in
interaction networks. The fact that the posterior distribution of λ follows a beta distribution
makes it straightforward to compute moments and other properties needed for this.

The average of λ is:

λ̄ =
α+ k

α+ β + n
, (7)

and its variance is:

V ar(λ|k) =
(α+ k)(β + n− k)

(α+ β + n)2(α+ β + n+ 1)
(8)

The mode of the distribution is:

λ̂ =
α+ k − 1

α+ β + n− 2
. (9)

The prior distribution

Parameters α and β determine the shape of the prior distribution, which follows a beta
distribution. These are called hyper parameters. Below we identify four ways to formulate the
prior distribution of λ.

Uninformative prior

In the absence of any external information, an uninformative prior is the most conservative
hypothesis for the distribution of λ. The beta distribution is in this case a uniform distribution,
specified with hyper parameters α = 1 and β = 1.

Distribution of connectance

The ecological network literature boasts a collection of networks for which connectance has been
calculated and for which we can thus define the connectance distribution. Connectance is
measured as C = L/S2, where L is the number of interactions and S is the number of species. It
measures the filling of an interaction matrix and thereby expresses the average probability that
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any two species interact with each other. If we know only the mean C and the variance σ2
C of the

distribution of C, then the beta parameters could be computed as follows using the method of
moments:

α = C(
C(1− C)

σ2
C

− 1), (10)

β = (1− C)(
C(1−C)

σ2
C

− 1). (11)

Degree distribution or interaction probabilities

The degree of a node in a network is defined as its number of connections to other nodes. The
degree distribution of a network is then the probability distribution of these degrees over the
whole network and the standardised degree could therefore be interpreted as an interaction
probability. It is consequently possible to use the degree distribution to inform the prior
distribution. The degree distribution could come from several networks, from a similar network
(e.g. a known network at slightly different location) or from the network of interest if interaction
probabilities for some species are already documented. The latter approach allows researchers to
apply information from known, abundant species to the rarest species for which interactions are
less frequently documented.

If our focal network describes a system similar to that in a known network, we can use the
distribution of interaction probabilities in that network to inform our prior. The probability of
any interaction Lij depends on the degrees of species i and j. Using normalised degrees ∆i and
∆j (i.e., degrees divided by the number of species in the network), we can obtain the probability
of interaction Lij=∆i ×∆j. Similar to the procedure for degree distribution, the distribution of
these interaction probabilities can be used to establish a prior distribution before any data from
the focal network are collected. For distributions of either degrees or interaction probabilities, the
procedure for the estimation of the hyper parameters follows the same approach as described
above for connectance except that each measurement is at the individual interaction level instead
of the network level.

Trait-matching function

As a fourth and final approach, it may be possible to obtain the prior distribution of λ using the
outcome of a trait-matching model, provided such a model has been parameterised using external
data and relevant traits are available. In such a case, the prior distribution would follow the
function P (λ|T) = f(T) based on a set of traits for both species T. There are several techniques
available to perform this inference of interaction probability, some of which are Bayesian, and we
refer to Bartomeus et al. (2016) and Weinstein & Graham (2017) for recent reviews about this
topic. Note that in this case the prior might not be beta-distributed and numerical methods
might be required to compute the posterior distribution.

A quantitative example

The Bayesian framework can be illustrated with a simple quantitative example. Suppose we have
n = 10 observations of co-occurrence between species i and species j in a given time interval and
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area, and k = 3 observations of interactions. The maximum likelihood estimate of the interaction
probability is simply λMLE = 3/10 = 0.3.

Now consider we know that species i is known to interact with 10 species (other than species
j), which have the following degrees:

degree=c(14, 4, 2, 3, 17, 6, 2, 15, 1, 1) .

If the network has 20 species total, this gives the normalised degrees:

norm degree=c(0.65, 0.20, 0.10, 0.15, 0.85, 0.30, 0.10, 0.75, 0.05, 0.05).

Species i has a normalised degree of 0.55 (it interacts with species j and 10 other species). We
can combine the normalised degree of i with the normalised degrees of its interaction partners to
obtain the following set of interaction probabilities for species i and each of its interaction
partners:

int probs = c(0.358, 0.110, 0.055, 0.082, 0.468, 0.165, 0.055, 0.412, 0.028, 0.028) .

The mean of these interaction probabilities is 0.176, approximately two-thirds the λMLE

obtained from the observed data. We can use the distribution of these interaction probabilities as
our prior distribution and estimate the uncertainty surrounding our λMLE . With some simple R
code (function “calculate parameters”, Appendix S1 ), we obtain prior parameters α=0.998 and
β=4.63. Using these priors in equations 7 and 8 above (or in the R function
“calculate distribution” in Appendix S1 ), we find a prior λ̄=0.177 and var(λ)=0.026. Adding the
observed data (n = 10, k = 3) and using the same code, we obtain posterior parameters α′=4.00
and β′=11.6 and a posterior λ̄=0.256 and var(λ)=0.012. Comparing the posterior distribution to
the prior, we see that the posterior is closer to the observed data and that the additional data
about interactions between species i and j has reduced the variance. We may also wish to
calculate a credible interval (analogous to the frequentist confidence interval). This is also quite
straightforward in R (see function “credible interval” in Appendix S1 ). In this case, a 95%
credible interval for λ̄ is (0.080, 0.491).

Now, consider the case where the two species have never been observed interacting across n
trials, i-e. k = 0. The question is then “what is the probability that these two species do not
interact”? Since it is not possible to prove that the two species could never interact (strictly
speaking, in a Bayesian approach λ = 0 is impossible), we must fix a threshold below which we
consider that there is no interaction (λ ∼ 0). We call this threshold probability λ∗. We then use
the cumulative distribution function to estimate P (λ < λ ∗ |L = 0, n) for different n. The function
“samples for threshold” in Appendix S1 calculates distribution function for λ∗ with an increasing
number of trials. This yields a surprising result: it requires >24 observations of no interactions to
be 95% sure that the interaction probability is smaller than λ∗=0.1 (recall Fig. 2, Box 2). Note
the special case where there is no observation of the two species co-occurring, n = 0. In this
situation, the posterior distribution converges to the prior distribution since the data include no
information on the probability with which species might interact should they co-occur.

Scaling up to networks - an empirical example

In the following section, we will provide an empirical example based on the well-sampled system
of Salix plants, herbivorous gallers, and their natural enemies described by Kopelke et al. (2017);
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see Box 1 or Appendix S2 for a description). Using this dataset, we will demonstrate the
derivation of prior distributions for the Salix -galler and galler-natural enemy components of these
networks and the differences between these priors and posterior distributions which include all
information available in this dataset (Kopelke et al., 2017). Finally, we will calculate network
properties using a suite of networks sampled from these posterior distributions and show how the
uncertainty around interactions that have not been observed impact these metrics.

Computing the posterior distribution

In a strict Bayesian framework, we wish to use a prior distribution that does not rely on any
information from the study at hand. Network data for a similar study system may, however, not
be available. In that case, one might use the first sub-network collected as “training data” to
guide future sampling. To simulate this situation, we created priors using a single sub-network
from the middle of the geographical distribution of the Kopelke et al. (2017) dataset. To
demonstrate how the use of data from a different system can affect the prior distribution and
conclusions based on it, we repeated our analyses using priors derived from a much smaller
Salix -galler-natural enemy system (Barbour et al., 2016, Data available from the Dryad Digital
Repository: https://doi.org/10.5061/dryad.g7805). This smaller system was much more
densely-connected than that described in Kopelke et al. (2017) and provided unreasonable
distributions for interaction probabilities (Appendix S4 ).

To obtain the priors based on the Zillis sub-network, we estimated frequencies of Salix -galler
interactions based on the normalised degree of each species in each network component (see
Appendix S3 for details and code). Specifically, we obtained prior parameters of α=8.72, β=305
for the Salix -galler component and α=0.700, β=8.49 for the galler-natural enemy components of
the network. After calculating these prior parameters, we were then able to estimate the posterior
distribution of interaction probabilities given the additional information in our dataset.

For species where no co-occurrences were observed (n = 0), we can calculate the estimates for
the mean and variance of λij directly from the prior parameters following equations 7 and 8 (see
Appendix S1 for R implementation). For the Salix -galler network, the prior distribution was:
λ̄=0.028, var(λ)=8.60×10−5. The prior distribution for the galler-natural enemy network was:
λ̄=0.076, var(λ)=0.008. The posterior interaction probabilities obtained based on the Zillis
sub-network were much lower than those obtained based on Barbour et al. (2016, Data available
from the Dryad Digital Repository: https://doi.org/10.5061/dryad.g7805); this emphasises the
importance of using an appropriate study system when constructing a prior (Appendix S4 ).

For a pair of species with some observed co-occurrences (n > 0), we can update the prior
distribution with these data. If we consider only pairs of species which were observed to co-occur
but not to interact, kij is always 0 and only nij will vary between species pairs, giving α′=α and
β′=β + nij. As the most extreme case, consider a pair of species which co-occurred at all 374 sites
and was never observed to interact. Using the priors described above, our distribution for the
Salix -galler network would become λ̄ij=1.27 × 10−2, var(λij)=1.82 × 10−5 while our distribution
for the galler-natural enemy network would become λ̄ij=1.83 × 10−3, var(λij)=4.76. Distributions
for both network components were very close to 0 with small variance about our estimate of λ;
species i and j are extremely unlikely to interact at sites or times not included in our sample.

For most pairs of species i and j, however, nij was much less than 374 and our posterior mean
and variance therefore retain more of the influence of the prior. We can see this in the increasing
means and variances as we decrease nij (Fig. 3). The change in distribution as nij decreases can
also be shown by calculating 95% credible intervals for λ (see the function “credible interval” in
Appendix S2 ). The 95% credible interval around the estimate of λ also widens as nij decreases
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from (0.001, 0.017) and (<0.001, 0.11) for hypothetical Salix -galler and galler-natural enemy pairs
that might be observed co-occurring at all 374 sites without any observed interaction to (0.152,
0.931) and (0.008, 0.364) for Salix -galler and galler-natural enemy pairs that were never observed
co-occurring. The 95% credible interval for hypothetical Salix -galler pairs widened from (0.006,
0.022) if the pair co-occurred at all sites to (0.013, 0.049) if they co-occurred at none. The 95%
credible interval for hypothetical galler-natural enemy pairs, meanwhile, widened from (0.00001,
0.008) to (0.0005, 0.304).

How many samples are required to reach a minimal precision

Rather than calculating credible intervals for a posterior distribution after collecting data, we
may wish to know how many data points are necessary to obtain a given level of confidence that
two co-occurring species do not interact. The number of samples needed will depend on both our
desired level of confidence and the threshold below which we assume that two species are unlikely
to ever interact (Fig. 4; see function samples for threshold in Appendix S1 ). In our dataset, the
entire 95% credible interval was (0.013, 0.049). We may therefore be 95% confident that the
interaction probability for Salix and galler species that have not been observed co-occurring is
below 0.05. As the peak of the prior distribution for the probability of interaction between Salix
and galler probabilities is around 0.02 (Fig. 3), to be 95% confident that the interaction
probability for these species is below 0.01 would require 1029 observed co-occurrences with no
interaction - far more than the number of sites in the (Kopelke et al., 2017) dataset.

The number of samples required to be 95% confident that the interaction probability between
galler and natural enemy species is below a threshold also increases quickly as the threshold
decreases. The 95% credible interval is (<0.001, 0.303) for the probability of interaction between
two species observed to co-occur but never interact. To be 95% confident that the probability of
interaction is below 0.1, 0.05, or 0.01 would require 15, 39, and 229 observed co-occurrences,
respectively.

Given the low levels of replication in most network studies, this implies that we should have
fairly low confidence in many “non-interacting” pairs of species. Even in the extensively
replicated Salix -galler-natural enemy dataset, very few species pairs were observed co-occurring
frequently enough to reach these thresholds. Regardless of our choice of prior, no species pairs
were observed to co-occur frequently enough to reach the threshold for an interaction probability
of 0.01. Discounting potential interactions, then, requires either a stronger prior expectation of no
interaction (e.g. for forbidden interactions) or very extensive sampling. For all we know, most
links absent from current descriptions of network structure may be so not because the species do
not interact, but because we have not sampled deeply enough to detect them.

Scaling up to network metrics

It is fairly straightforward to compute most network metrics when the different λ of the adjacency
matrix are known and assumed not to vary without variance (Poisot et al., 2016). Several of these
metrics derive directly from quantitative indices of network structure which are equivalent to λ.
The remainder, originally defined for binary networks, can be adjusted to account for interaction
probabilities between zero and one. It is not as easy, however, to understand how the uncertainty
in these estimated interaction probabilities influences network metrics. Computation of these
metrics involves non-linear functions. Since Jensen’s inequality states that the average of a
non-linear function of a stochastic variable differs from the function of the average of that
variable, any uncertainty in the values of λ could bias both the mean and variance of a network
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metric. One way to avoid potentially biased analytical calculation of network properties is to
calculate the properties of a suite of simulated networks.

Using the prior distributions and procedures described above, we calculated posterior
probability distributions for Salix -galler or galler-natural enemy pairs that were not observed
interacting. Using these posterior distributions and assuming probabilities of 1 for pairs of species
that were observed interacting, we created a suite of 100 webs of each network type by randomly
sampling from each posterior distribution. After obtaining these posterior networks, we calculated
the connectance of each web, as well as the number of links per resource (Salix in the Salix -galler
networks or galler in the galler-natural enemy networks) and links per consumer. To demonstrate
how these network metrics will be affected by detection uncertainty, we then created a suite of
filtered networks for each posterior network. Networks were filtered by randomly sampling 99%,
95%, 90%, 80%, 70%, 60%, and 50% of the interactions included in each posterior network. This
gradient is akin to a gradient of sampling effort. For each level of detection accuracy, we created
100 randomly-sampled networks per posterior-probability network (giving 100 posterior networks
and 1000 detection-filtered networks each for the Salix -galler and galler-natural enemy networks).
We then calculated the same network properties as described above.

We find, perhaps not surprisingly, that the posterior webs for the Salix-galler network had
higher connectances than the original, observed web (C=0.028 for the observed web and 0.082 ≤
C ≤ 0.096 for the posterior webs; Fig. 5A). The number of links per Salix species in the observed
web (LSalix=2.71) was similar to those in the posterior webs (2.53 ≤ LSalix ≤ 3.19; Fig 5C). The
number of links per galler, however, was lower in the observed web (Lgaller=1.47) than in the
posterior webs, accounting for the increased connectance (4.67 ≤ Lgaller ≤ 5.88; Fig. 5E). There
was a more substantial difference in the nestedness of the observed and posterior webs: the
observed network had NODF=0.560 while the posterior networks were more nested (1.39
≤ NODF ≤ 1.94). Even the networks sampled with a detection filter of 50% had non-zero
nestedness (Fig. 5G). This last result highlights the potential for the possibility for network
structure to vary when considering the possibility that unobserved species pairs may interact.

Considering the galler-natural enemy networks, the connectance, mean links per galler, and
mean links per natural enemy were also much lower in the observed web (C=0.078, Lgaller=9.99,
and Lnaturalenemy=7.45, respectively) than in the posterior webs (0.186 ≤ C ≤ 0.198, 13.4
≤ Lgaller ≤ 14.6, and 23.4 ≤ Lnaturalenemy ≤ 25.0). When the detection probability was relatively
low (i.e., 50%), however, the properties of randomised networks became similar to those in the
observed webs (Fig. 5B,D,F). Nestedness was higher in the observed network (NODF=6.85) than
in the posterior webs (6.31 ≤ NODF ≤ 6.82; Fig. 5H); in this case, the stronger the detection
filter the farther apart were the observed and posterior webs.

Conclusions/recommendations

Real interaction networks vary over several dimensions (Kitching & Kitching, 1987; Olesen et al.,
2011; Pires et al., 2011a; Baiser et al., 2012; Fodrie et al., 2015; Novak & Tinker, 2015) and to
capture this variation we must turn from static descriptions of network structure to probabilistic
descriptions. In this study, we have developed the analytical tools to capture the uncertainty in
the estimation of pairwise interactions and a conceptual framework for its individual components:
interaction uncertainty, process uncertainty, and detection uncertainty. Using this framework
leads us to offer tangible recommendations for improved descriptors of ecological interactions.
First, our analyses point to detection uncertainty as a major contributor to overall uncertainty of
is establishing the absence of interaction. To counter this and establish true absences of
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interactions requires comparatively large sample size on the order of 30-50 observations per
species pair. Second, where such extensive sampling is not feasible, researchers should still
acknowledge the varying levels of confidence surrounding the presence or absence of interactions
between different pairs of species. Including the n and k values for each interaction will clearly
indicate which unobserved interactions are most likely to be observed with further sampling and
which estimates are more reliable. Third, the uncertainty around interactions (especially
interactions that were not observed) should be incorporated in calculations of network properties
like connectance or nestedness. Re-sampling networks based on a probabilistic understanding of
networks is straightforward and gives distributions for network properties rather than point
estimates. This not only acknowledges the fact that interactions vary over time and space but will
also facilitate comparisons between networks. With confidence intervals around network metrics,
we can not only say that one network is more connected than another but also whether the
networks are more different than we would expect based on imperfect sampling of interactions. To
facilitate these recommendations, we provide all code used in this paper in the supplementary
material.
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Boxes and figures

Box 1: Salix -galler-natural enemy dataset.
As a case study, we use an extensively sampled Salix -galler-natural enemy meta-network.

This dataset consists of a single community type sampled across Europe: willow (Salix ) species,
willow-galling sawflies, and their natural enemies. The data were collected over 29 years at 374
unique locations across Europe with a total of 641 site visits. Each site visit or each unique
site can be considered as a network in its own right or as an independent sample from which
to build the meta-network. Here we take the more conservative approach and pool visits to
the same site for a sample size of 374 sub-networks. The meta-network consists of 1,173 dif-
ferent interactions between 52 Salix nodes, 92 herbivore nodes, and 126 natural enemy nodes.
The high spatiotemporal resolution of this network and the unusually high sampling effort
implemented at the site level makes this dataset particularly well suited for illustrating the
difficulties in completely sampling a network and testing Bayesian approaches to overcome
these difficulties.

We may begin by comparing the frequency of co-occurrences for pairs of species in each part
of the network to reveal the challenge of having sufficient sampling to be confident that an in-
teraction does not occur. Most pairs of species (3,986/4,992 Salix -galler pairs and 9,794/12,096
galler-natural enemy pairs) are never found co-occurring and, for species that did occur to-
gether, the total number of co-occurrences was generally low (mean=4.24, variance=36.3 for
Salix -galler pairs; mean=3.87, variance=28.8 for galler-natural enemy pairs; Fig. 1A-B). The
bulk of these co-occurring species pairs were never observed to interact: only 2.82% of Salix -
galler pairs and 7.76% of galler-natural enemy pairs were observed interacting at one or more
sites. Of those pairs that did interact, the incidence of interaction was also low (mean=12.0,
variance=155 for Salix -galler pairs; mean=4.04, variance=29.3 for galler-natural enemy pairs;
Fig. 1C-D). Thus, even in the most extensive data set that we could find, there was very little
empirical data for each species pair. This suggests that limited sampling is a major source of
uncertainty in all empirical networks. This dataset also illustrates the potential for increased
sampling to not necessarily reveal more interactions as a pair of species that is able to interact
may not be observed interacting in all samples where the pair co-occurs (Fig. 1E-F).
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Box 2: Calculating the credible interval around a probability estimate
Here we describe the derivation of the Clopper-Pearson credible interval for the estimated

probability of interaction λ of a pair of species observed co-occurring n times and interacting
k times. As we are most interested in the probability of interaction between species pairs that
have never been observed co-occurring, we consider only the case where k = 0 over a variety
of n. This is straightforward to do in R (see the function “credible interval” in Appendix S1 ).

First, we must obtain the α and β parameters for the prior distribution. In this study we
obtained these parameters using the R (R Core Team, 2016) function fitdist from the package
fitdistrplus (Delignette-Muller & Dutang, 2015). Once α and β are known, we can update
them using our observed data. Specifically, we are interested in α′ = α+k and β′ = β+n−k.
These parameters can then be used to calculate a credible interval using the R (R Core Team,
2016) function qbeta. In the table below, we present the 95% credible intervals for Salix -galler
and galler-natural enemy pairs with different numbers of observed co-occurrences (n) and
no observed interactions (k = 0), calculated using prior information derived from the Zillis
sub-network (Kopelke et al., 2017).

Table 1: Here we give the lower and upper bounds of 95% credible intervals for the
probability of interaction λ between Salix -galler or galler-natural enemy pairs that have been
observed co-occurring n times but have never been observed interacting.

n
Salix -galler galler-natural enemy

Lower bound Upper bound Lower bound Upper bound

0 0.013 0.049 5.39 ×10−4 0.304
1 0.013 0.048 4.82 ×10−4 0.276
2 0.013 0.048 4.35 ×10−4 0.253
5 0.012 0.048 3.37 ×10−4 0.203
10 0.012 0.047 2.45 ×10−4 0.152
15 0.012 0.046 1.93 ×10−4 0.121
20 0.012 0.046 1.59 ×10−4 0.101
25 0.012 0.045 1.35 ×10−4 0.087
50 0.011 0.042 7.72 ×10−5 0.050
100 0.010 0.037 4.16 ×10−5 0.027
150 0.009 0.033 2.84 ×10−5 0.019
200 0.008 0.030 2.16 ×10−5 0.014

374 0.006 0.022 1.18 ×10−5 0.008
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Figure 1: A-B) Most pairs of Salix and gallers or gallers and natural enemies were never
observed co-occurring despite the high levels of replication in our example dataset. For
those pairs that were observed together at least once (nij > 0), the number of observed
co-occurrences was generally small (<10). Here we show a histogram of the number of pairs
of species observed co-occurring at least once. 3986 Salix -galler and 9794 galler-enemy pairs
were never observed co-occurring: these pairs are omitted from the histogram. C-D) Most
pairs of species that were observed at the same site were never observed interacting. Here
we show a histogram of the number of observed interactions within pairs of co-occurring
species. Species which co-occurred but never interacted are included in these histograms.
E-F) Here we show, for each species pair, the number of observed interactions plotted
against the number of observed co-occurrences. Salix -galler pairs either are never observed
interacting or interact almost every time they co-occur, while galler-enemy pairs had more
variable frequencies of interaction. In panels E and F the red, dashed line indicates a 1:1
relationship between interactions and co-occurrences.
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Figure 2: A simple example will illustrate the problem of imperfect detection of interactions.
Assume that we want to infer the probability of an interaction between two species, i and j.
Now assume that in reality, interaction between i and j is completely impossible (i.e. the true
λ = 0) but the observer does not know this and seeks to estimate this interaction probability
(λ). The number of observed interactions will follow a binomial distribution with number of
interactions k and number of observations n. Using this distribution, we can compute the
credible interval of the estimated probability λ. Even assuming no added detection error
in observing the incidence of the interaction, a single observation of species co-occurrence
reveals very little regarding the probability of the interaction as the credible interval for a
pair of species with one observation essentially spans from 0 to 1. Only with 35 observations
will the upper limit of the credible interval be lowered to 0.1. Thus, adding more observations
is certainly useful in controlling uncertainty, but the number of observations added needs to
be very high. Here we show the upper bound (solid black line) of a 95% Clopper-Pearson
true credible interval for λ when k = 0 (i and j have not been observed interacting) for
a variety of n (observed co-occurrences of i and j). Using a Bayesian approach with an
informative prior can reduce the confidence interval about λ for a given sample size. A
threshold interaction probability of 0.1 is indicated by the dashed red line.
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Figure 3: Using prior distributions based on the Salix -galler and galler-natural enemy
networks sampled at a single site in Kopelke et al. (2017), we can calculate posterior dis-
tributions for the probability of interaction (λ) between two species that have not yet been
observed interacting. Here we show posterior distributions for λ in each network component
ranging from the prior distribution (n = 0 observed co-occurrence) to the distribution ob-
tained when the pair of species has been observed co-occurring 100 times. The distribution
narrows and approaches zero as the sample size increases. Likewise, the maximum likelihood
estimator for the mean probability of interaction (diamonds at top of each panel) approaches
zero and the 95% credible interval (lines at top of each panel) narrows as sample size in-
creases. A) The posterior distributions for λ in the Salix -galler component are narrower at
low n but shrink less with increased sampling than those for B) the distributions of λ in the
galler-natural enemy component.
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Figure 4: The number of samples required to achieve a given level of confidence that an
interaction probability λij is below a given threshold varies with both parameters. With a
low threshold, our confidence that λij is below the threshold increases rapidly with repeated
observation of co-occurrence without interaction. Here we show the cumulative density
functions for threshold probabilities of 0.5 (solid line), 0.25 (dashed line), 0.1 (dash-dot
line), and 0.05 (dotted line) as well as the points at which the cdf reaches 0.90 (orange
square), 0.95 (red circle), and 0.975 (blue diamond) for each threshold value. The large ticks
along the x-axis indicate the number of samples associated with each of these points. A) In
the Salix -galler network component, the 95% credible interval for λij when n=0 was (0.013,
0.049). We can therefore be at least 95% confident that λij is below thresholds of 0.1 or
0.05 without any observed co-occurrence of species i and j. To be confident that λij is less
than 0.01, however, would require more observed co-occurrences than there are sites in our
dataset. B) In the galler-parasitoid network component, the 95% credible interval for λij

was substantially broader and many observed co-occurrences (≈ 15-35) are required to be
95% confident that λij is below thresholds of 0.1 or 0.05.
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Figure 5: Here we show the mean connectance, links per resource (Salix in the Salix -
galler networks and gallers in the galler-natural enemy networks), links per consumer, and
nestedness (NODF) for networks assembled using posterior distributions based on a sin-
gle sub-network in the Kopelke et al. (2017) dataset (Zillis). We created 100 “posterior-
sampling” networks and then, for each of these, created 100 “detection-filter” networks by
randomly sampling 50%-99% of the interactions included in the posterior-sampling network.
This simulates imperfect detection of interactions in the field. Each point represents the
mean network property (e.g., connectance) obtained from a set of 100 detection-filter net-
works, plotted against the value of the network property in the posterior-sampling network
used to create the detection-filter networks. For each property and both network types, the
posterior-sampling networks cover a relatively small range of network properties than the
range covered by networks with varying detection probabilities. The value of each property
decreases with the proportion of links included in the detection-filter networks.
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Pires, M.M., Guimarães Jr., P.R., Araújo, M.S., Giaretta, A.A., Costa, J.C.L. & dos Reis, S.F.
(2011a). The nested assembly of individual-resource networks. J Anim Ecol, 80, 896–903.
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